DOI QR코드

DOI QR Code

Thermoelectric Properties of Graphite Nanosheets/Poly(vinylidene fluoride) Composites

Graphite Nanosheets/PVDF 복합체의 열전 성질

  • Yoon, Ho Dong (Photo-electronic Hybrids Research Center, Korea Institute of Science and Technology (KIST)) ;
  • Nam, Seungwoong (Photo-electronic Hybrids Research Center, Korea Institute of Science and Technology (KIST)) ;
  • Tu, Nguyen D.K. (Photo-electronic Hybrids Research Center, Korea Institute of Science and Technology (KIST)) ;
  • Kim, Daeheum (Department of Chemical Engineering, Kwangwoon University) ;
  • Kim, Heesuk (Photo-electronic Hybrids Research Center, Korea Institute of Science and Technology (KIST))
  • 윤호동 (한국과학기술연구원 광전하이브리드연구센터) ;
  • 남승웅 (한국과학기술연구원 광전하이브리드연구센터) ;
  • 응우옌 두 (한국과학기술연구원 광전하이브리드연구센터) ;
  • 김대흠 (광운대학교 화학공학과) ;
  • 김희숙 (한국과학기술연구원 광전하이브리드연구센터)
  • Received : 2013.05.10
  • Accepted : 2013.05.28
  • Published : 2013.09.25

Abstract

GNS/PVDF composites were prepared using graphite nanosheets (GNS) and poly(vinylidene fluoride) (PVDF) for flexible thermoelectric application. We measured the electrical conductivity, thermal conductivity and Seebeck coefficient of GNS/PVDF composites with different contents of GNS and then evaluated the thermoelectric properties of GNS/PVDF composites. The electrical conductivity of GNS/PVDF composites increased from 389 to 1512 S/m with increasing the content of GNS from 10 to 70 wt%. While the electrical conductivity dramatically increased, Seebeck coefficient and thermal conductivity did not show any big difference as the content of GNS increases. In this study, we demonstrated that GNS/PVDF composites improved the thermoelectric properties by decreasing the thermal conductivity due to the phonon scattering at the interfaces between polymer and GNS nanoplatelets.

유연 열전소자를 제조하기 위한 열전재료로서, graphite nanosheet(GNS)와 poly(vinylidene fluoride) (PVDF)를 복합화하여 GNS/PVDF 복합체를 제조하였다. GNS의 함량에 따른 전기전도도, 열전도도, 지벡상수를 측정하여 열전성능을 확인하였다. GNS의 함량이 10에서 70 wt%로 증가하면서 전기전도도는 389에서 1512 S/m로 향상되는 결과를 보였다. 복합체의 전기전도도가 크게 증가하는 반면에 지벡 상수는 26.7에서 31.2 ${\mu}V/K$로 큰 변화를 보이지 않았으며, 열전도도 역시 0.24 W/m K를 유지하면서 변화를 보이지 않았다. 고분자와의 복합화를 통하여 GNS 자체의 높은 열전도도를 낮춤으로써 향상된 열전성능을 갖는 열전재료를 제조할 수 있었다.

Keywords

Acknowledgement

Supported by : 지식경제부

References

  1. G. Chen, M. S. Dresselhaus, G. Dresselhaus, J. P. Fleurial, and T. Cailat, Int. Mater. Rev., 48, 45 (2003). https://doi.org/10.1179/095066003225010182
  2. T. M. Tritt, H. Boettner, and L. Chen, MRS Bull., 33, 366 (2008). https://doi.org/10.1557/mrs2008.73
  3. M. Baxendale, K. G. Lim, and A. J. Amaratunga, Phys. Rev. B, 61, 12705 (2000). https://doi.org/10.1103/PhysRevB.61.12705
  4. A. Boukai, Y. Bunimovich, J. Tahir-Kheli, J.-K. Yu, W. Goddard, and J. Heath, Nature, 451, 168 (2008). https://doi.org/10.1038/nature06458
  5. O. Meincke, D. Kaempfer, H. Weickmann, C. Friedrich, M. Vathauer, and H. Warth, Polymer, 45, 739 (2004). https://doi.org/10.1016/j.polymer.2003.12.013
  6. A. Majumdar, Science, 303, 777 (2004). https://doi.org/10.1126/science.1093164
  7. E. J. Winder and A. B. Ellis, J. Chem. Educ., 73, 940 (1996). https://doi.org/10.1021/ed073p940
  8. C. Yu, Y. S. Kim, D. Kim, and J. C. Grunlan, Nano Lett., 8, 4428 (2008). https://doi.org/10.1021/nl802345s
  9. J. C. Grunlan, Y. S. Kim, S. Ziaee, X. Wei, B. Abdel-Magid, and K. Tao, Macromol. Mater. Eng. Sci., 291, 1035 (2006). https://doi.org/10.1002/mame.200600191
  10. Y. Shinohara, K. Ohara, H. Nakanishi, Y. Imai, and Y. Isoda, Mater. Sci. Forum, 492, 141 (2005).
  11. P. G. Collins, K. Bradley, M. Ishigami, and A. Zettl, Science, 287, 1801 (2000). https://doi.org/10.1126/science.287.5459.1801
  12. C. Qin, X. Shi, S. Q. Bai, L. D. Chen, and L. J. Wang, Mater. Sci. Eng. A, 420, 208 (2006). https://doi.org/10.1016/j.msea.2006.01.055
  13. C. A. Hewitt, A. B. Kaiser, S. Roth, M. Craps, R. Czerw, and D. L. Carroll, Appl. Phys. Lett., 98, 183110 (2011). https://doi.org/10.1063/1.3580761
  14. Y.-M. Choi, D.-S. Lee, R. Czerw, P.-W. Chiu, N. Grobert, M. Terrones, M. Reyes-Reyes, H. Terrones, J. C. Charlier, P. Ajayan, S. Roth, D. L. Carroll, and Y.-W. Park, Nano Lett., 3, 839 (2003). https://doi.org/10.1021/nl034161n
  15. F. Sadeghi and A. Ajji, Polym. Eng. Sci., 49, 200 (2009). https://doi.org/10.1002/pen.21248
  16. K. P. Pramoda, A. Mohamed, I. Y. Phang, and T. Liu, Polym. Int., 54, 226 (2005). https://doi.org/10.1002/pi.1692
  17. A. Linares and J. L. Acosta, Eur. Polym. J., 31, 615 (1995). https://doi.org/10.1016/0014-3057(95)00020-8
  18. M. Zheng, A. Jagota, E. D. Semke, B. A. Diner, S. M. Robert, S. R. Lustig, R. E. Richardson, and X. G. Tassi, Nat. Mater., 2, 338 (2003). https://doi.org/10.1038/nmat877
  19. L. Liu and J. C. Grunlan, Adv. Funct. Mater., 17, 2343 (2007). https://doi.org/10.1002/adfm.200600785
  20. N. D. Luong, U. Hippi, J. T. Korhonen, A. J. Soininen, J. Ruokolainen, L.-S. Johansson, J. D. Nam, L. H. Sinh, and J. Seppala, Polymer, 52, 5237 (2011). https://doi.org/10.1016/j.polymer.2011.09.033
  21. D. Kim, Y. Kim, K. Choi, J. C. Grunlan, and C. Yu, ACS Nano, 4, 513 (2010). https://doi.org/10.1021/nn9013577
  22. W. Lin, R. Zhang, and C. P. Wong, J. Elect. Mater., 39, 268 (2010). https://doi.org/10.1007/s11664-009-1062-2
  23. M. S. Dresselhaus, G. Chen, M. Y. Tang, R. Yang, H. Lee, D. Wang, Z. Ren, J. P. Fleurial, and P. Gogna, Adv. Mater., 19, 1943 (2007). https://doi.org/10.1002/adma.200602681
  24. J. Hone, I. Ellwood, M. Muno, Ari Mizel, M. L. Cohen, A. Zettl, A. G. Rinzler, and R. E. Smalley, Phys. Rev. Lett., 80, 1042 (1998). https://doi.org/10.1103/PhysRevLett.80.1042

Cited by

  1. Synthesis and Application of a Polyamide-containing Phosphorous and Sulfur Flame-retardant for Nylon Fabric vol.42, pp.2, 2013, https://doi.org/10.7317/pk.2018.42.2.157