• Title/Summary/Keyword: Gradient analysis

Search Result 2,295, Processing Time 0.034 seconds

Analysis of the air tightness for high speed train (고속전철의 기밀 거동 해석)

  • 정병철;염경안;강석택
    • Proceedings of the KSR Conference
    • /
    • 2002.10a
    • /
    • pp.220-224
    • /
    • 2002
  • As the train run through the tunnels, especially at high speed, pressure shock developed by the running train gives the influence on the pressure fluctuation inside the tunnel and consequently, inside the car. This pressure changes and pressure gradient is closely related with the tunnel section, train speed, air tightness of the train, length of the tunnel, etc. This study includes the analysis of the pressure behavior at the varied train speed and tunnel length. The results show that train speed affects the pressure gradient inside the car almost linearly, and that there exist the critical tunnel lengths that gives the maximum value of pressure change and pressure gradient, respectively.

  • PDF

Analysis of hydraulic gradient variation according to topographic gradient and rainfall in unconfined aquifer (자유면 대수층에서 지형 경사와 강우를 고려한 수리경사 변동 분석)

  • Kim, Byung-Woo;Kang, Dong-hwan;Jo, Won Gi;Park, Kyoung-deok
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.10
    • /
    • pp.691-695
    • /
    • 2023
  • In this study, two sections with different topographic gradients were in the Hyogyo-ri area, the hydraulic gradients were calculated for each section, and the hydraulic gradient fluctuations according to the topographic gradient and rainfall were analyzed. The variations of the hydraulic gradient within the research site was large in the section with steep topographic gradient and small in the section with gradual topographic gradient. The influence of the variation in hydraulic gradient due to rainfall was high in the section with steep topographic gradient, and low in the section with gradual topographic gradient. Through this study, it was found that the hydraulic gradient fluctuations in unconfined aquifer showed as a complex effect of topographic gradient and rainfall.

Learning Behaviors of Stochastic Gradient Radial Basis Function Network Algorithms for Odor Sensing Systems

  • Kim, Nam-Yong;Byun, Hyung-Gi;Kwon, Ki-Hyeon
    • ETRI Journal
    • /
    • v.28 no.1
    • /
    • pp.59-66
    • /
    • 2006
  • Learning behaviors of a radial basis function network (RBFN) using a singular value decomposition (SVD) and stochastic gradient (SG) algorithm, together named RBF-SVD-SG, for odor sensing systems are analyzed, and a fast training method is proposed. RBF input data is from a conducting polymer sensor array. It is revealed in this paper that the SG algorithm for the fine-tuning of centers and widths still shows ill-behaving learning results when a sufficiently small convergence coefficient is not used. Since the tuning of centers in RBFN plays a dominant role in the performance of RBFN odor sensing systems, our analysis is focused on the center-gradient variance of the RBFN-SVD-SG algorithm. We found analytically that the steadystate weight fluctuation and large values of a convergence coefficient can lead to an increase in variance of the center-gradient estimate. Based on this analysis, we propose to use the least mean square algorithm instead of SVD in adjusting the weight for stable steady-state weight behavior. Experimental results of the proposed algorithm have shown faster learning speed and better classification performance.

  • PDF

An efficient numerical model for free vibration of temperature-dependent porous FG nano-scale beams using a nonlocal strain gradient theory

  • Tarek Merzouki;Mohammed SidAhmed Houari
    • Structural Engineering and Mechanics
    • /
    • v.90 no.1
    • /
    • pp.1-18
    • /
    • 2024
  • The present study conducts a thorough analysis of thermal vibrations in functionally graded porous nanocomposite beams within a thermal setting. Investigating the temperature-dependent material properties of these beams, which continuously vary across their thickness in accordance with a power-law function, a finite element approach is developed. This approach utilizes a nonlocal strain gradient theory and accounts for a linear temperature rise. The analysis employs four different patterns of porosity distribution to characterize the functionally graded porous materials. A novel two-variable shear deformation beam nonlocal strain gradient theory, based on trigonometric functions, is introduced to examine the combined effects of nonlocal stress and strain gradient on these beams. The derived governing equations are solved through a 3-nodes beam element. A comprehensive parametric study delves into the influence of structural parameters, such as thicknessratio, beam length, nonlocal scale parameter, and strain gradient parameter. Furthermore, the study explores the impact of thermal effects, porosity distribution forms, and material distribution profiles on the free vibration of temperature-dependent FG nanobeams. The results reveal the substantial influence of these effects on the vibration behavior of functionally graded nanobeams under thermal conditions. This research presents a finite element approach to examine the thermo-mechanical behavior of nonlocal temperature-dependent FG nanobeams, filling the gap where analytical results are unavailable.

Study on the Gradient Surface of Carboxylic Acid Group Using Corona Discharge Treatment and Subsequent Graft Polymerization (코로나 방전처리와 그라프트 중합에 의한 카르복시산기의 기울기 표면 제조에 관한 연구)

  • 김형우;이문철;박병기
    • Textile Coloration and Finishing
    • /
    • v.6 no.2
    • /
    • pp.17-23
    • /
    • 1994
  • Carboxylic acid group gradient surface where the density of carboxylic acid groups changes gradually along the sample length was prepared. Carboxylic acid group gradient surface was produced by the treatment of low density polyethylene sheet using a corona with gradually increasing power, followed by the grad polymerization of acrylic acid. The prepared gradient surface was characterized by the measurement of water contact angle, Fourier-transform infrared spectroscopy in the attenuated total reflectance mode, and electron spectroscopy for chemical analysis.

  • PDF

Bacterial Community Analysis during Composting of Garbage using Denaturing Gradient Gel Electro-phoresis (Denaturing Gradient Gel Electrophoresis를 이용한 음식물 쓰레기 퇴비화 세균 군집 분석)

  • Ryu Hee Wook;Cho Kyung-Suk
    • Microbiology and Biotechnology Letters
    • /
    • v.33 no.3
    • /
    • pp.226-230
    • /
    • 2005
  • The microbial community during composting of gargage was analyzed using 16S rDNA PCR - DGCE (denaturing gradient gel electrophoresis). Pseudomonas spp. was found throughout the process, and thermophilic Bacillus spp. was dominated at the thermophilic stage. Six thermophilic bacteria were isolated and identified as B. caldoxylolyticus, B. thermoalkalophilus, and B. thermodenitrificans.

THE GRADIENT RECOVERY FOR FINITE VOLUME ELEMENT METHOD ON QUADRILATERAL MESHES

  • Song, Yingwei;Zhang, Tie
    • Journal of the Korean Mathematical Society
    • /
    • v.53 no.6
    • /
    • pp.1411-1429
    • /
    • 2016
  • We consider the nite volume element method for elliptic problems using isoparametric bilinear elements on quadrilateral meshes. A gradient recovery method is presented by using the patch interpolation technique. Based on some superclose estimates, we prove that the recovered gradient $R({\nabla}u_h)$ possesses the superconvergence: ${\parallel}{\nabla}u-R({\nabla}u_h){\parallel}=O(h^2){\parallel}u{\parallel}_3$. Finally, some numerical examples are provided to illustrate our theoretical analysis.

GRADIENT PROJECTION METHODS FOR THE n-COUPLING PROBLEM

  • Kum, Sangho;Yun, Sangwoon
    • Journal of the Korean Mathematical Society
    • /
    • v.56 no.4
    • /
    • pp.1001-1016
    • /
    • 2019
  • We are concerned with optimization methods for the $L^2$-Wasserstein least squares problem of Gaussian measures (alternatively the n-coupling problem). Based on its equivalent form on the convex cone of positive definite matrices of fixed size and the strict convexity of the variance function, we are able to present an implementable (accelerated) gradient method for finding the unique minimizer. Its global convergence rate analysis is provided according to the derived upper bound of Lipschitz constants of the gradient function.

GRADIENT EXPLOSION FREE ALGORITHM FOR TRAINING RECURRENT NEURAL NETWORKS

  • HONG, SEOYOUNG;JEON, HYERIN;LEE, BYUNGJOON;MIN, CHOHONG
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.24 no.4
    • /
    • pp.331-350
    • /
    • 2020
  • Exploding gradient is a widely known problem in training recurrent neural networks. The explosion problem has often been coped with cutting off the gradient norm by some fixed value. However, this strategy, commonly referred to norm clipping, is an ad hoc approach to attenuate the explosion. In this research, we opt to view the problem from a different perspective, the discrete-time optimal control with infinite horizon for a better understanding of the problem. Through this perspective, we fathom the region at which gradient explosion occurs. Based on the analysis, we introduce a gradient-explosion-free algorithm that keeps the training process away from the region. Numerical tests show that this algorithm is at least three times faster than the clipping strategy.

Korean Paddy Soil Microbial Community Analysis Method Using Denaturing Gradient Gel Electrophoresis (Denaturing gradient gel electrophoresis를 이용한 한국의 논 토양 미생물 다양성 분석 방법)

  • Choe, Myeongeun;Hong, Sung-Jun;Lim, Jong-Hui;Kwak, Yunyoung;Back, Chang-Gi;Jung, Hee-Young;Lee, In-Jung;Shin, Jae-Ho
    • Journal of Applied Biological Chemistry
    • /
    • v.56 no.2
    • /
    • pp.95-100
    • /
    • 2013
  • Soil microbes are important integral components of soil ecosystem which have significant and diverse role in organic matter decomposition, nitrogen cycling, and nitrogen fixation. In this study an effective denaturing gradient gel electrophoresis (DGGE) method was employed for paddy soil microbial diversity survey. For optimum paddy soil microbial DNA extraction, different methods such as Lysis buffer, skim milk bead, sodium phosphate buffer, Epicentre Soil Master DNA extraction kit (Epicentre, USA) and Mo Bio Power Soil DNA kit (MO BIO, USA) methods were utilized. Among all the method, using Mo Bio Power Soil kit was most effective. DGGE analysis of Bacteria was carried out at 6% polyacylamide gel and 45-60% denaturing gradient in the optimal conditions. Whereas DGGE analysis of fungi was done at 6% polyacrylamide gel and 45-80% denaturing gradient in the optimal conditions. By applying the above assay, it was found that variation within the microbial community of paddy soil occurs by a factor of time. DGGE assay used in this study through for a variety of soil microbial analysis suggests the potential use of this method.