DOI QR코드

DOI QR Code

Analysis of hydraulic gradient variation according to topographic gradient and rainfall in unconfined aquifer

자유면 대수층에서 지형 경사와 강우를 고려한 수리경사 변동 분석

  • Kim, Byung-Woo (K-water Research Institute, K-water Water Resources Corporation) ;
  • Kang, Dong-hwan (Institute of Environmental Geosciences, Pukyong National University) ;
  • Jo, Won Gi (National Greenhouse Gas Inventory and Research Center) ;
  • Park, Kyoung-deok (Institute of Environmental Geosciences, Pukyong National University)
  • 김병우 (한국수자원공사 K-water연구원) ;
  • 강동환 (부경대학교 지질환경연구소) ;
  • 조원기 (온실가스종합정보센터) ;
  • 박경덕 (부경대학교 지질환경연구소)
  • Received : 2023.08.24
  • Accepted : 2023.10.04
  • Published : 2023.10.31

Abstract

In this study, two sections with different topographic gradients were in the Hyogyo-ri area, the hydraulic gradients were calculated for each section, and the hydraulic gradient fluctuations according to the topographic gradient and rainfall were analyzed. The variations of the hydraulic gradient within the research site was large in the section with steep topographic gradient and small in the section with gradual topographic gradient. The influence of the variation in hydraulic gradient due to rainfall was high in the section with steep topographic gradient, and low in the section with gradual topographic gradient. Through this study, it was found that the hydraulic gradient fluctuations in unconfined aquifer showed as a complex effect of topographic gradient and rainfall.

본 연구에서는 효교리 지역에서 지형 경사가 다른 2개 구간을 설정하여 구간별 수리경사를 산정하고 지형 경사와 강우에 따른 수리경사 변동을 분석하였다. 연구부지 내 모든 지하수공에서 강우량이 증가할수록 지하수위가 상승하는 것으로 나타났으며, 지하수위 상승량은 지하수공의 고도가 높을수록 작았다. 연구부지 내 수리경사의 변동은 지형 경사가 급한 구간에서는 크고 지형 경사가 완만하면 작았다. 강우에 의한 수리경사 변동은 지형 경사가 급한 구간에서는 강우에 의한 영향성이 높았으며, 지형 경사가 완만한 구간에서는 강우에 의한 영향성이 낮았다. 본 연구를 통해 자유면 대수층에서 수리경사 변동은 지형 경사와 강우에 의한 복합적인 영향으로 나타남을 알 수 있었다.

Keywords

Acknowledgement

본 연구는 K-water 과제 "낙동강하구 염지하수의 연직 프로파일링 기술 시범 적용 연구(과제번호: G220571)"의 일환으로 수행되었으며, 또한 국립환경과학원의 농축산지역 지하수 중 질산성질소 수질관리 개선사업(V)의 지원을 받아 수행하였습니다(NIER-2020-04-02-052).

References

  1. Bosch, D.D., Sheridan, J.M., and Lowrance, R.R. (1996). "Hydraulic gradients and flow rates of a shallow coastal plain aquifer in a forested riparian buffer." Transactions of the ASAE, Vol. 39, No. 3, pp. 865-871. https://doi.org/10.13031/2013.27571
  2. Cole, B.E., and Silliman., S.E. (1996). "Estimating the horizontal gradient in heterogeneous, unconfined aquifers: Comparison of three-point schemes." Groundwater Monitoring & Remediation, Vol. 16, No. 2, pp. 84-91. https://doi.org/10.1111/j.1745-6592.1996.tb00128.x
  3. Devlin, J.F. (2003). "A spreadsheet method of estimating best-fit hydraulic gradients using head data from multiple wells." Groundwater, Vol. 41, No. 3, pp. 316-320. https://doi.org/10.1111/j.1745-6584.2003.tb02600.x
  4. Devlin, J.F., and McElwee, C.D. (2007). "Effects of measurement error on horizontal hydraulic gradient estimates." Groundwater, Vol. 45, No. 1., pp. 62-73. https://doi.org/10.1111/j.1745-6584.2006.00249.x
  5. Hahn, J.S. (1998). Groundwater environment and pollution, Pakyoungsa, pp. 107-111.
  6. Kim, T.Y., Kang, D.H., Kim, S.S., and Kwon, B.H. (2009). "Variation characteristics of hydraulic gradient and major flow direction in the landfill soils." Journal of the Environmental Sciences, Vol. 18, No. 3, pp. 315-323.
  7. McDonald, J.P. (2021). "Measuring a low horizontal hydraulic gradient in a high transmissivity aquifer." Groundwater, Vol. 59, No. 5, pp. 694-709. https://doi.org/10.1111/gwat.13091
  8. McKenna, S.A., and Wahi, A. (2006). "Local hydraulic gradient estimator analysis of long-term monitoring networks." Groundwater, Vol. 44, No. 5, pp. 723-731. https://doi.org/10.1111/j.1745-6584.2006.00211.x
  9. Park, K.D., Kang, D.H., Jo, W.G., Shin, I.K., Oh, Y.Y., Kim, M.S., and Kim, H.K. (2023). "Seasonal variation of hydraulic gradient according to rainfall in unconfined aquifer: Hyogyo-ri." Journal of Environmental Science International, Vol. 32, No. 5, pp. 303-313.
  10. Rau, G.C., Post, V.E.A., Shanafield, M., Krekeler, T., Banks, E.W. and Blum, P. (2019). "Error in hydraulic head and gradient time-series measurements: A quantitative appraisal." Hydrology and Earth System Sciences, Vol. 23, No. 9, pp. 3603-3629. https://doi.org/10.5194/hess-23-3603-2019
  11. Serfes, M.E. (1991). "Determining the mean hydraulic gradient of ground water affected by tidal fluctuations." Groundwater, Vol. 29, No. 4, No. 549-555. https://doi.org/10.1111/j.1745-6584.1991.tb00546.x
  12. Wang, C., Wang, B., Wang, Y., Wang, Y., Zhang, W., and Yan, Y. (2019). "Impact of near-surface hydraulic gradient on the interrill erosion process." European Journal of Soil Science, Vol. 71, No. 4, pp. 598-614.
  13. Zhang, Y., Cao, W., Wang, W., and Dong, Q. (2013). "Distribution of groundwater arsenic and hydraulic gradient along the shallow groundwater flow-path in Hetao Plain, Northern China." Journal of Geochemical Exploration, Vol. 135, pp. 31-39. https://doi.org/10.1016/j.gexplo.2012.12.004