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Learning behaviors of a radial basis function network 
(RBFN) using a singular value decomposition (SVD) and 
stochastic gradient (SG) algorithm, together named RBF-
SVD-SG, for odor sensing systems are analyzed, and a fast 
training method is proposed. RBF input data is from a 
conducting polymer sensor array. It is revealed in this 
paper that the SG algorithm for the fine-tuning of centers 
and widths still shows ill-behaving learning results when a 
sufficiently small convergence coefficient is not used. Since 
the tuning of centers in RBFN plays a dominant role in the 
performance of RBFN odor sensing systems, our analysis 
is focused on the center-gradient variance of the RBFN-
SVD-SG algorithm. We found analytically that the steady-
state weight fluctuation and large values of a convergence 
coefficient can lead to an increase in variance of the 
center-gradient estimate. Based on this analysis, we 
propose to use the least mean square algorithm instead of 
SVD in adjusting the weight for stable steady-state weight 
behavior. Experimental results of the proposed algorithm 
have shown faster learning speed and better classification 
performance. 
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I. Introduction 

There is demand for the development of instruments that 
emulate the human sense of smell, which is a sophisticated 
chemosensory system. An electronic odor sensing system 
comprises an array of conducting polymer sensors mounted on a 
ceramic substrate together with associated electronics. Extremely 
selective information for discrimination between adsorbed 
chemical species can be obtained by an analysis of the cross-
sensitivities between sensor elements. The modulation of 
electrical conducting polymers by external physical and 
chemical interactions makes them attractive for use in chemical 
sensors [1], [2]. Using an electronic odor sensing system, it is 
desirable to discriminate between chemicals and compare one 
sample with another. The ability to classify pattern characteristics 
from relatively small pieces of information has led to growing 
interest in methods of sensor recognition. Radial basis function 
networks (RBFN) and other neural networks have recently been 
applied to odor classification problems [3], [4].  

To use an RBFN as a classifier, parameters such as centers, 
widths, and weights have to be optimized in the training stage 
prior to the classification stage, in which classification is carried 
out using the RBFN with optimized and fixed parameters. 
Along with how well a sensor mechanism is used, how 
accurately (close to optimum) the parameters are acquired is 
one of the most important factors in classification performance. 
Usually, training RBFN parameters requires a lot of 
computation and time. This is another obstacle to cope with. 
Mean squared error (MSE) learning speed is an indicator 
showing how long a training time is needed, and a steady-state 
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MSE value indicates how close to the optimum values the 
adjusted parameters are. Though sensor drift can cause a little 
shifting of optimum parameters of an RBFN, acquiring the 
closest parameters to the optimum can be a solution for 
minimizing the loss of performance due to sensor drift. 

The centers and widths of an RBFN are calculated by the 
fuzzy c-means algorithm and the distribution of input patterns. 
The weights of an RBFN are calculated by the singular value 
decomposition (SVD) method in a single shot process. This 
RBFN-SVD is considered superior to other learning 
algorithms, particularly in terms of processing speed and 
solvability of non-linear pattern responses in odor analysis [4]. 
But, the performance of an RBFN as a classifier is highly 
dependent on the choice of centers and widths in basis function. 
So, the fine-tuning of centers and widths is needed and the 
stochastic gradient (SG) method [5] is successfully applied for 
this purpose. The adaptive RBFN-SVD-SG algorithm has 
shown good classification performance for complex and mixed 
chemical patterns and has been confirmed by experimental 
trials [6]. In our study on MSE learning behavior in training 
parameters, however, the RBFN-SVD-SG algorithm shows ill-
behaving MSE learning characteristics when a sufficiently 
small convergence coefficient is not used. However, a small 
value of the convergence parameter makes the learning speed 
of the algorithm slow. Improving the performance of an RBFN 
in terms of convergence speed and recognition error has 
become an important research area for many researchers [7]-
[9]. An investigation into the causes of such performance 
degradation in the RBFN-SVD-SG algorithm is needed. 
Focusing on the choice of a convergence coefficient, we 
observed experimentally that learning curves of a center-
gradient estimate of the RBF-SVD-SG algorithm increase and 
bounce if a sufficiently small value of convergence coefficient 
is not used. In this paper, we present a theoretical analysis of 
the factors contributing to center-gradient fluctuation of the 
RBFN-SVD-SG algorithm and propose a method to acquire 
faster convergence and better recognition performance. 

II. RBFN Algorithms  

The architecture of an RBF network is simple and consists of 
input, hidden, and output layers. The basis functions in the 
hidden layer produce a localized response to the input and 
typically use hidden layer neurons with Gaussian response 
functions; in that case, the activation levels Oj of hidden unit j 
are calculated by  
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where x is the input vector, cj is the center associated with 
hidden unit j, and σ is the width coefficient for hidden unit j, 
which represent a measure of the spread of data. The outputs of 
the hidden unit lie between 0 and 1. The closer the input to the 
center of the Gaussian is, the larger the response of the node. 
The activation level Oj of an output unit is determined by 
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where wj is the weight from hidden unit j to output . 
The performance of an RBF network is highly dependent on 

the choice of centers and widths in basis function. For a 
minimum number of nodes, the selected centers should well 
represent the training data for acceptable classification. Most of 
the training algorithms for an RBF network have been divided 
into two stages of processing. First, as a clustering method the 
fuzzy c-means algorithm, which we found relatively good, is 
applied to the input patterns in order to determine the centers for 
hidden layer nodes. After the centers are fixed, the widths are 
determined in a way that reflects the distribution of the centers 
and input patterns. Once the centers and widths are fixed, the 
weights between the hidden and output layers are trained by 
block-processing using SVD. This two-stage method provides 
some useful solutions in the pattern classification problem. 
However, since the centers and widths are fixed after they are 
chosen, this method often results in an unsatisfying performance 
when input patterns are not particularly clustered. For the fine-
tuning of centers and widths, the SG algorithm was applied and 
produced great performance improvement [6].  

III. RBF-SG Algorithm for Center and Width Adaptation  

The RBF-SG algorithm adapts all the free parameters of the 
network using the gradient descent of the instantaneous output 
error power. An input vector having L elements is defined as  
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Let the error be denoted by e(n) = d(n) –y(n), where d(n) is the 
desired output and y(n) is the RBF output, all at training time n. 
For network parameter φ, the RBF-SG algorithm adapts its 
value φ (n) at time n according to   
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where θµ  is the convergence coefficient. Among the localized 
basis functions, the Gaussian is the most popular choice for 
RBF-SG. The output of RBF-SG with M Gaussian basis 
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functions is  
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As a localized basis function, Gaussian is a fast decaying 
function. It can be assumed that not all the basis function units 
contribute significantly to the network output values. Hence, 
instead of training all the hidden nodes, one could train only a 
selected number of basis function nodes with the largest output 
values. This implies that each node output can be considered 
not greatly correlated with other node outputs due to a node’s 
localized basis function.  

The RBF-SG algorithm adapts the network parameters 
according to the following equations [5]. 
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where )(n
jc is the j-th element of center vector C(n) at time n. 

Coefficients sµ  and cµ are adaptation coefficients for widths 
and centers, respectively, and they control the speed of 
adaptation. The weights between the hidden and output layers 
are tuned by SVD calculation in the same iteration along with 
the centers and widths. 

The RBF-SG algorithm can provide greater robustness to 
poor initial choices of parameters, especially the centers [10]. 
The fine tuning of centers by RBF-SG plays a dominant role in 
the performance of RBFN odor sensing systems. But the 
difference between center estimate and optimum center is fed 
back to center-gradient estimation and can induce performance 
degradation. We analyze the influence of the convergence 
coefficient on the center-gradient estimation noise of the RBF-
SVD-SG algorithm.  

IV. The Center-Gradient of the RBF-SG Algorithm 

The performance of the stochastic gradient method is 
dependent on how accurately the MSE gradient is estimated 
[8]. In the RBF-SG algorithm, the center-gradient estimate is  
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The center-gradient estimate for the j-th center becomes  
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Equation (9) can be written as  

2)(

)()(

2)(

2)()(
)()( ][

]exp[4)(
n

j

n
j

n

n
j

n
j

n
n

j
n

cj

cxcx
wen

σσ

−−−
−=∇∧ . (10) 

Defining  
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(6) and (8) become (12) and (13), respectively. 
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Notice that the difference between center estimate and 
optimum center is fed back to the center-gradient estimation 
and can induce error accumulation. 

Assuming the centers in the steady-state (that is, as ∞→n ) 
are located close to the optimum centers, and the Euclidian 
distance between the input patterns and the cluster’s center is  
less than the width, 
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Defining the difference between input pattern x(n) and the 
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Substituting (15) into (14) yields 
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For the sake of convenience, we define 
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Taking the Z transform of (18), the transfer function for the 
variance of the j-th center-gradient is the system A(j, z) with 
input )(n
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In (23), we can find that steady-state weight fluctuation and 
large values of cµ  can lead to a large fluctuation of the 
center-gradient estimate. For stable steady-state weight 
behavior, we propose to use the least mean square (LMS) 
algorithm [11] instead of SVD for adjusting the weight, 
without decreasing cµ . Because the center deviation is fed 
back to the center-gradient estimation as in (13), error 
accumulation can be produced. The SVD, which can be 
considered as a method of a matrix-inverse process in a single-
shot process, can induce instability due to these accumulated 
errors. The LMS algorithm, which calculates weights 
iteratively pattern by pattern, is known to be slow but robust. 
The experimental results when using the LMS algorithm for 
adjusting weights in the RBFN (RBFN-LMS-SG) are 
presented in the following section.   

V. Experiments and Results  

1. Apparatus for Odor Measurement  

For the measurement, we used an odor sensing system that 
has an array of conducting polymer sensors mounted on a 
ceramic substrate together with associate electronics developed 
by Prof. Krishna C. Persaud at University of Manchester, U.K. 
[1]. Along with this instrument, a sampling apparatus 
consisting of a compressed air cylinder, activated charcoal filter, 
flow meter, water bath, Teflon tubing, and Duran bottles has 
been designed for laboratory use to collect samples under 
highly controlled conditions. Figure 1 shows the simple 
configuration of the measurement system. 

The experiment preparation started by passing clean air 
through the system for several minutes before sampling. This 
 

 

Fig. 1. Apparatus configuration for odor measurement. 
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gave enough time to heat up the sensor array for a stable 
condition as well as flushing out any unwanted odors that may 
have been present in either the connected tubing or equipment. 
Each sensor responded very quickly when the two-way valve 
was opened to allow an analysis of the chemical vapor; this 
response is due to chemical and electrical effects of the 
chemicals on the surface of polymer sensors.   

Figure 2 illustrates the way the sensors operate. When a 
volatile chemical is presented, all the sensors respond with a 
reversible change of resistance. The intensity of response is 
dependent on the affinity of chemical species for individual 
sensors, and is proportional to the concentration present. The 
steady-state response of each sensor to the absolute sum of the 
response of the entire array is taken, and the raw data between 
the two cursors can be transformed into a pattern that is unique 
so that particular chemical species, or a mixture, can be used as  
 

 

Fig. 2. Raw response of conducting polymer sensor array and
extraction pattern. 
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‘fingerprints’ to identify it. 
Measurements of the chemicals were repeated to collect 

patterns from solvent vapors over a period of four weeks. 
Figure 3 shows that there was some variability in the responses 
of the sensor array during the four-week measurements, which 
may be due to causes including drift. 

2. Results and Discussion 

For testing the center-gradient behavior and MSE 
performance of the classifier based on the adaptive RBFN-
SVD-SG algorithm on drifting data, a conducting polymer 
sensor array consisting of 32 sensors (L=32) was used to 
collect patterns from solvent vapors measured over a period of 
four weeks.  For network training, eight centers for each class 
(M = 8) were chosen from a total of 520 patterns in data sets 
from weeks 1 and 2. After having trained the adaptive RBFN-
SG using weeks 1 and 2 data sets obtained from 1% 
acetonitrile (ac1), 10% acetonitrile (ac10), 1% acetone (ae), 1% 
butanone (bu), 10% methanol (me), 1% propanol (pr1), 10% 
propanol (pr10), and water (wa), the RBFN was applied to the 
previously unseen data of 528 patterns (66 patterns for each 
gas) from weeks 3 and 4 to evaluate odor prediction under drift 
effects. Previous works on RBFN odor sensing systems have 
not analyzed MSE learning behaviors. We observed that MSE 
bouncing and fluctuations of the center-gradient estimate occur 
when a sufficiently small cµ is not used. Center-gradient 
behaviors are compared for different values of cµ  in Fig. 4. 
For convenience, cµ  is expressed as u in Figs. 4, 5 and 6. 

The magnitude of the center-gradient for cµ = 0.00005 shows 
stable behavior, but center-gradients for larger cµ ’s, that is, 

cµ = 0.00009 and cµ = 0.0001, show unstable fluctuations 
 

 

Fig. 3. Normalized response patterns from 32-sensor array for 10% methanol. 
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Fig. 4. Center-gradient curves of RBF-SVD-SG. 
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Fig. 5. MSE learning curves of RBF-SVD-SG. 
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in proportion to cµ . That is, the larger cµ  the algorithm 
adopts, the bigger fluctuation shown. Figure 5 shows MSE 
learning curves of RBF-SVD-SG for different values of cµ .  

We observed that MSE-bouncing can occur even after 
converging at about the epoch of 45000 when cµ = 0.0001 
and around the epoch of 50000 when cµ = 0.00009. In Fig. 4, 
we can also notice that the beginning of the bouncing is at 
about the epoch of 45000 when cµ = 0.0001 and around the 
epoch of 50000 when cµ = 0.00009. This implies that ill-
behaving MSE learning curves can occur according to the 
fluctuation of the center-gradient. A method of avoiding the 
problems is to use a very small value of cµ , such as cµ = 
0.00005 in Fig. 5, but this produces a slow convergence.   

The center-gradient behaviors of the proposed RBFN-LMS-
SG using cµ = 0.001 and the conventional RBFN-SVD-SG 
using cµ = 0.00005 are shown in Fig. 6(a). The MSE 
performances of the proposed RBFN-LMS-SG using cµ = 
0.001 and the conventional RBFN-SVD-SG using cµ = 
0.00005 are in Fig. 6(b). The value of the convergence 
coefficient for the LMS algorithm is set to the same value, 
0.001.  

Fig. 6. (a) The center-gradient behaviors and (b) MSE performances.
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The RBF-LMS-SG has shown an earlier steadiness of 
center-gradient than the RBF-SVD-SG in Fig. 6(a), and this 
produces the rapid convergence in MSE performance shown in 
Fig. 6(b). The RBF-SVD-SG converges in about 80000 epochs, 
while the RBFN-LMS-SG reaches the same MSE in about 
20000 epochs. Also, the RBFN-LMS-SG shows a lesser 
minimum MSE value by 1 dB than RBF-SVD-SG at an epoch 
of 80000.  

Figures 7(a) and 7(b) show gas prediction performances for 
10% propanol (pr10, 400-466 pattern) and water (wa, 467-528 
pattern), in which most big errors occur, at the epochs of 20000 
and 80000, respectively. 

For pr10 (target level is 7), the prediction error of the RBFN-
LMS-SG at the epoch of 20000 is a little bigger than the 
RBFN-SVD-SG at the epoch of 80000, but for wa (target level 
is 8), the RBFN-LMS-SG at the epoch of 20000 already shows 
a smaller prediction error than RBFN-SVD-SG at the epoch of 
80000. On average, this result is in accordance with the MSE 
results in Fig. 6(b). The improvement of classification 
performance of the RBFN-LMS-SG after convergence is also 
shown in Fig. 7(b). 
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Fig. 7. Odor prediction results for 10% propanol (pr10) and water
(wa) at (a) epoch = 20000 and (b) epoch = 80000. 

0 20 40 60 80 100 120 140
6.6 

6.8 
7.0 

7.2 
7.4 
7.6 

7.8 
8.0 

8.2 
8.4 
8.6 

P
re

di
ct

ed
 o

ut
pu

t (
7=

pr
10

, 8
=w

a)
 

Patterns (+400) 

Epoch=20000 
 RBFN-LMS-SG
 RBFN-SVD-SG

0 20 40 60 80 100 120 140

6.8 

7.0 

7.2 

7.4 

7.6 

7.8 

8.0 

8.2 

8.4 

P
re

di
ct

ed
 o

ut
pu

t (
7=

pr
10

, 8
=w

a)
 

Patterns (+400) 

Epoch=80000 
 RBFN-LMS-SG
 RBFN-SVD-SG

(a) 

(b) 

 

VI. Conclusions 

This paper presents an analysis of the center-gradient 
behavior of the RBFN-SVD-SG algorithm for an odor sensing 
system with conducting polymer sensor array. The center-
deviation can have a negative effect on the RBF hidden node 
output. We found theoretically that the steady-state weight 
fluctuation and large values of cµ  can lead to an increase of 
variance of the center-gradient estimate. We also observed that 
the center-gradient for a small convergence coefficient shows 
stable behavior, but center-gradients for larger convergence 
coefficients show unstable fluctuations in proportion to the size 
of the convergence coefficient. The MSE learning curves of the 
RBF-SVD-SG algorithm can show bounces in accordance 
with the instable behavior of the center-gradient. From the 
theoretical results, methods for a stable steady-state weight, 
rather than decreasing cµ , can be reasonable solutions. The 
proposed RBFN-LMS-SG using the LMS algorithm instead of 
SVD for adjusting the weight shows faster convergence speed  

and lower minimum MSE. Odor classification can be 
performed with good accuracy with the proposed method 
when it is used for odor sensing systems. 
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