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GRADIENT PROJECTION METHODS FOR THE

n-COUPLING PROBLEM

Sangho Kum and Sangwoon Yun

Abstract. We are concerned with optimization methods for the L2-

Wasserstein least squares problem of Gaussian measures (alternatively
the n-coupling problem). Based on its equivalent form on the convex cone

of positive definite matrices of fixed size and the strict convexity of the

variance function, we are able to present an implementable (accelerated)
gradient method for finding the unique minimizer. Its global convergence

rate analysis is provided according to the derived upper bound of Lipschitz

constants of the gradient function.

1. Introduction

For probability measures µ and ν on Rd with finite second moment, the
Monge-Kantorovich problem is the minimization problem

(1) inf
π∈Π(µ,ν)

∫
Rd×Rd

‖x− y ‖2dπ(x, y),

where Π(µ, ν) denotes the set of transport plans between µ and ν, i.e., the set
of probability measures on Rd ×Rd with marginals µ and ν. The distance dW ,
the square root of the minimum, on the set of probability measures with finite
second moment is called the L2-Wasserstein metric. A coupling achieving the
infimum of (1) always exists and is unique when µ is absolutely continuous with
respect to the Lebesgue measure. It is determined by (id × T )∗µ, where T is
Brenier’s map between µ and ν, the gradient of a real valued convex function
on Rd satisfying T∗µ = ν, where T∗µ denotes the push-forward of µ through T.
See also [9, 13,22].
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The multimarginal optimal transport problem reads as

(2) arg min
γ∈Π(µ1,...,µn)

∫
(Rd)n

 n∑
j=1

wj‖xj − T (x) ‖2
 dγ(x1, . . . , xn),

where µj ’s are probability measures with finite second moment and ω = (w1,
. . . , wn) is a positive probability vector in Rn, T is the arithmetic barycenter
T (x) =

∑n
j=1 wjxj and Π(µ1, . . . , µn) is the set of probability measures on

(Rd)n having µ1, . . . , µn as marginals. It is closely related to the least squares
problem for the Wasserstein distance dW ; minimizing the averaged sum of
squared Wasserstein distances

(3) arg min
µ

n∑
j=1

wjd
2
W (µ, µj).

In [1], Agueh and Carlier established existence and uniqueness of the so-
lution to (3) under absolutely continuity of some µj . This provides a natural
notion of Wasserstein barycenter on the space of absolutely continuous proba-
bility measures. They also find a sufficient condition for the unique minimizer
in terms of Brenier’s maps and establish a precise relationship between the
multimarginal optimal problem (2) and the least squares problem by µ = T∗γ.
Finding barycenters between more than three measures is more complicated
but interestingly, the Wasserstein barycenter problem recently found natural
applications in image processing and statistics [8, 10, 11, 26]. We refer to the
books of Villani [29,30] for a modern account of optimal transportation theory.

This paper is concerned with the Wasserstein barycenter of Gaussian mea-
sures, which is alternatively known as the n-coupling problem, and study-
ing an efficient optimization method for the coupling problem. It has at-
tracted increasing attention for existence [14,27] but uniqueness issue remained
[12,15,18,25,27], until the work of Agueh and Carlier.

For Gaussian measures µ and ν with zero mean and covariance matrices
A and B respectively, the Wasserstein distance between µ and ν is explicitly
given by Givens and Shortt [15]

dW (A,B) =

√
Tr(A+B)− 2Tr(A

1
2BA

1
2 )

1
2 .

The Wasserstein barycenter of Gaussian measures µj with zero mean and with
positive definite covariance matrices Aj , j = 1, . . . , n respectively, is determined
by a positive definite solution of the following nonlinear matrix equation,

(4) X =
1

n

n∑
j=1

(X
1
2AjX

1
2 )

1
2 .
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By Agueh and Carlier ([1, Theorem 6.1]), it has a unique positive definite
solution for positive definite Aj ’s. The conjecture on the convergence of the
fixed point iteration from (4) has recently been settled [2]. Their proofs in
[1,2] depend heavily on nonsmooth analysis, convex duality and optimal trans-
portation theory and do not provide a substantial convergence analysis with
numerical methods. As far as a numerical issue of the fixed point iteration in
[2] is concerned, a rigorous convergence analysis is not presented even though
some numerical experiments are reported. So the iterative method still has
a room for improvement from a theoretical point of view, that is, it deserves
further research.

Bhatia, Jain and Lim [7] have recently established the strict convexity of the
variance function and suggested some potential optimization methods based
on their convexity result. They approach the n-coupling problem using only
matrix analysis tools from its interpretation on the setting of the convex cone
of positive definite matrices.

Motivated by the observations above, we propose a standard optimization
method of computing the Wasserstein barycenter of Gaussian measures based
on the gradient of the variance function and provide its solid convergence rate
analysis via the strict convexity of the objective function on the convex cone
of positive definite matrices [7]. This is the main purpose of the present paper.
Indeed, we adapt a gradient projection method. Two types of classical gradient
projection methods are presented depending on selecting stepsizes using Armijo
rule. The first one uses Armijo rule along the feasible direction whereas the
second one does Armijo rule along the projection arc. For the second, its global
sublinear rate of convergence is well-known. The first method also seems to
have global sublinear rate of convergence but a detailed proof has not been
found yet. We provide a proof for the global sublinear convergence rate of the
first. An accelerated gradient projection method adapted from [28, Algorithm
1] is also presented.

This paper is organized as follows. In Section 2, we briefly review about
recent results on the n-coupling problem and the Wasserstein barycenter of
Gaussian measures. Convexity of the variance function and its gradient func-
tion are explicitly addressed in Section 3 together with a potential use of the
gradient-based optimization method. We show in Section 4 the Lipschitz con-
tinuity of the gradient function and find an upper bound of the Lipschitz con-
stants. In Section 5, we describe gradient projection methods and analyze its
convergence properties. In particular, the global sublinear convergence rate is
verified. In Section 6, we briefly describe an accelerated gradient projection
method. We report numerical results for finding the Wasserstein barycenter
of Gaussian measures on randomly generated matrices with proposed gradient
projection methods in Section 7. Concluding remarks are included in Section
8.
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2. The n-coupling problem

The realization that the Wasserstein metric can be taken as a reasonable
distance between probability distributions first appeared in the paper of Kan-
torovich and Rubinstein [17]. Although explicit calculation is very difficult for
most concrete examples, a successful computation of the Wasserstein metric of
Gaussian measures was done by Olkin-Pukelsheim [25], Dowson-Landau [12],
Givens-Shortt [15] and Knott and Smith [18]. Identifying a positive definite ma-
trix A with the Gaussian measure with zero mean and with covariance matrix
A, the Wasserstein metric between two positive definite matrices is determined
explicitly by Givens and Shortt [15]

(5) dW (A,B) =

√
Tr(A+B)− 2Tr(A

1
2BA

1
2 )

1
2 .

Definition. Let ω = (w1, . . . , wn) be a positive probability vector and let
A = (A1, . . . , An) ∈ Pn. The ω-weighted Wasserstein barycenter of A is defined
by

(6) Ω(ω;A) := arg min
X>0

n∑
j=1

wjd
2
W (X,Aj).

By Agueh and Carlier ([1, Theorem 6.1]), it has a unique minimizer. In fact
they established the existence and uniqueness of Wasserstein barycenter for
absolutely continuous measures by using tools of nonsmooth analysis, convex
duality and optimal transportation theory.

The objective function in (6) is f : P→ R, where

(7) f(X) =

n∑
j=1

wj trAj +

n∑
j=1

wj tr
(
X − 2(A

1
2
j XA

1
2
j )

1
2

)
.

In [7], Bahtia-Jain and Lim derived new and important results for the objective
function f , the strict convexity which follows basically the operator concavity
of the square root X 7−→ X

1
2 , and the formula for its gradient in terms of the

matrix geometric mean A#B := A1/2(A−1/2BA−1/2)1/2A1/2:

∇f(X) =

n∑
j=1

wj
(
I −Aj#X−1

)
= I −

n∑
j=1

wj(Aj#X
−1).

(It follows by showing ∇g(X) = 1
2 (A2#X−1) for the map g(X) = (AXA)

1
2 .)

The uniqueness issue of (6) then turns equivalently into the existence of positive
definite solution of

(8) ∇f(X) = 0
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from its strict convexity. That is, the least squares problem (6) has a unique
solution if and only if the following nonlinear matrix equation has a positive
definite solution

(9) I =

n∑
j=1

wj(Aj#X
−1).

Existence of positive definite solution of

(10) X =

n∑
j=1

wj(X
1
2AjX

1
2 )

1
2

follows from Brouwer’s fixed point theorem [1]. The continuous map X 7→∑n
j=1 wj(X

1
2AjX

1
2 )

1
2 is a self map on the Löwner order interval [α∗I, β∗I] :=

{X : α∗I ≤ X ≤ β∗I}, where

α∗ :=

 n∑
j=1

wj

√
λmin(Aj)

2

, β∗ :=

 n∑
j=1

wj

√
λmax(Aj)

2

and λmin(A) and λmax(A) denote the minimum and maximum eigenvalue of A,
respectively. Here X ≤ Y means that Y − X is positive semidefinite. Since
the order interval is compact, (8) has a positive definite solution by Brouwer’s
fixed point theorem.

Although the uniqueness issue of (6) and also (8) is nicely and completely
settled by Agueh-Carlier [1] and Bhatia-Jain-Lim [7] in different directions,
the computational issue for the minimizer is still problematic and open. An
iterative method based on the fixed point equation (8) is recently proved in
[2, Theorem 4.2]: limk→∞ Sk = Ω(ω;A), where

Sk+1 = S
− 1

2

k

 n∑
j=1

wj (S
1
2

k AjS
1
2

k )
1
2

2

S
− 1

2

k , S0 ∈ P.

See also [7] for a simplified proof using only matrix analytic techniques. As men-
tioned in the introduction, this iterative method needs a theoretical strength-
ening with a proper convergence analysis.

We close this section with an application of the strict convexity of f and its
uniqueness of minimizer. This implies the uniqueness of the critical point of
f (8), that is, the equation (9) (and also (10)) has a unique positive definite
solution, the Wasserstein barycenter Ω(ω;A). We consider the continuous map
Γ : P→ P from (9)

Γ(X) =

n∑
j=1

wj(Aj#X
−1).

Using the Wasserstein barycenter, Γ is a bijection with

Γ−1(X) = X
1
2 Ω(w;X−

1
2A1X

− 1
2 , . . . , X−

1
2AnX

− 1
2 )X

1
2 .
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Indeed,

X = Γ(Y )⇐⇒ I =

n∑
j=1

wjX
− 1

2 (Aj#Y
−1)X−

1
2

⇐⇒ I =

n∑
j=1

wj(X
− 1

2AjX
− 1

2 )#(X−
1
2Y −1X−

1
2 )

⇐⇒ X
1
2Y X

1
2 = Ω(w;X−

1
2A1X

− 1
2 , . . . , X−

1
2AnX

− 1
2 ).

In particular, for a fixed positive definite matrix B, the following nonlinear
matrix equation

(11) B =

n∑
j=1

wj(Aj#X
−1)

has the unique positive definite solution X = Γ−1(B).

3. Lipschitz continuity

In this section we show the Lipschitz continuity of the gradient function ∇f
and find an upper bound of the Lipschitz constants.

Let H be the Euclidean space of d × d Hermitian matrices equipped with
the inner product 〈X,Y 〉 := Tr(XY ). The Frobenius norm ‖ · ‖F is defined by

‖X ‖F = (trX2)1/2.
Let A1, . . . , An be elements of P and let w = (w1, . . . , wn) be a weight

vector; i.e., wj > 0 and
∑n
j=1 wj = 1. We have seen in the previous section

that ∇f(X) = I −
∑n
j=1 wj(Aj#X

−1) and Ω(ω;A) ∈ [α∗I, β∗I]. Now, we set

Lmin = min
1≤j≤n

{λmin(Aj)}, Lmax = max
1≤j≤n

{λmax(Aj)}.

Now, we establish the following theorem for the Lipschitz continuity of the
gradient function.

Theorem 3.1. For α∗I ≤ X,Y ≤ β∗I with X 6= Y,

‖∇f(X)−∇f(Y ) ‖F
‖X − Y ‖F

≤ L2
max

2α
3
2
∗ L

3
2

min

≤ L2
max

2L3
min

.

Proof. We first consider the matrix function H(X) := X−1/2 on a Loewner
interval [αI, βI] with α > 0. It is the composition H = (−F ) ◦G, where

G : [αI, βI]→ [
√
αI,

√
βI], G(X) = X1/2,

F : [
√
αI,

√
βI]→ [− 1√

α
I,− 1√

β
I], F (X) = −X−1.

We note that F and G are operator monotone functions on P. According to
Theorem X.3.8 of [6]

‖G(X)−G(Y ) ‖F ≤
1

2
√
α
‖X − Y ‖F , X, Y ∈ [αI, βI],
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‖F (X)− F (Y ) ‖F ≤
1

α
‖X − Y ‖F , X, Y ∈ [

√
αI,

√
βI].

Then for X,Y ∈ [αI, βI],

‖H(X)−H(Y ) ‖F = ‖F (G(X))− F (G(Y )) ‖F ≤
1

α
‖G(X)−G(Y ) ‖F

≤ 1

α

1

2
√
α
‖X − Y ‖F =

1

2α
3
2

‖X − Y ‖F .

Next, let X,Y ∈ [α∗I, β∗I]. Then for all j = 1, . . . , n, α∗LminI ≤ A1/2
j XA

1/2
j

≤ β∗LmaxI. By the preceding step,

‖∇f(X)−∇f(Y ) ‖F ≤
n∑
j=1

wj
∥∥Aj#X−1 −Aj#Y −1

∥∥
F

=

n∑
j=1

wj

∥∥∥∥A 1
2
j

[(
A

1
2
j XA

1
2
j

)− 1
2

−
(
A

1
2
j Y A

1
2
j

)− 1
2

]
A

1
2
j

∥∥∥∥
F

≤
n∑
j=1

wj

∥∥∥A 1
2
j

∥∥∥2

·
∥∥∥∥(A 1

2
j XA

1
2
j

)− 1
2

−
(
A

1
2
j Y A

1
2
j

)− 1
2

∥∥∥∥
F

≤ Lmax

n∑
j=1

wj

∥∥∥∥(A 1
2
j XA

1
2
j

)− 1
2

−
(
A

1
2
j Y A

1
2
j

)− 1
2

∥∥∥∥
F

≤ Lmax

2α
3
2
∗ L

3
2

min

n∑
j=1

wj

∥∥∥A 1
2
j XA

1
2
j −A

1
2
j Y A

1
2
j

∥∥∥
F

=
Lmax

2α
3
2
∗ L

3
2

min

n∑
j=1

wj

∥∥∥A 1
2
j (X − Y )A

1
2
j

∥∥∥
F

≤ L2
max

2α
3
2
∗ L

3
2

min

‖X − Y ‖F .

This completes the proof. �

If Aj ∈ [αI, βI] for all j = 1, . . . , n, then

‖∇f(X)−∇f(Y ) ‖F ≤
β2

2α3
‖X − Y ‖F .

4. Gradient projection methods

In this section, we describe gradient projection methods for solving (6) and
analyze their convergence properties. In particular, we provide a proof of the
global sublinear convergence rate of the method using the Lipschitz constant
of the gradient function obtained from Section 4. Gradient projection methods
can be classified into two types according to stepsize selection.

First, we formally describe the algorithmic procedure for the gradient pro-
jection method (GPM) below.



1008 S. KUM AND S. YUN

Algorithm 1 GPM

Choose X0 ∈ D. Initialize k = 0. Update X(k+1) from X(k) by the following
template:

Step 1.: Find X̄(k) = [X(k) − s(k)∇f(X(k))]+,
Step 2.: Select a stepsize t(k),
Step 3.: X(k+1) = X(k) + t(k)(X̄(k) −X(k)).

Here [·]+ denotes the projection on the set D := [α∗I, β∗I].

GPM can be classified into two versions [4] depending on how Armijo rule
is applied to select stepsizes. The first version is to use Armijo rule along
the feasible direction X̄(k) −X(k) where the feasible vector X̄k is obtained by
taking a step −s(k)∇f(X(k)) along the negative gradient and projecting the
result X(k)− s(k)∇f(X(k)) on D. In this case, we set s(k) = 1 for all k and t(k)

is chosen by the Armijo rule over the interval [0, 1].

Choose t(k)
init

> 0 and let t(k) be the largest element of {t(k)
init
ξj}j=0,1,... satisfying

(12) f(X(k) + t(k)D(k)) ≤ f(X(k))− σt(k)〈∇f(X(k)), D(k)〉,
where 0 < ξ < 1, 0 < σ < 1, and D(k) = X̄(k) −X(k).

The second version is to use Armijo rule along the projection arc. In this
case, the stepsize t(k) = 1 for all k and the stepsize s(k) is chosen by the scheme
similar to Armijo rule. In other words, X(k+1) is determined by an Armijo-like
rule on the projection arc {X(k)(s) | s > 0}, where for all s > 0, X(k)(s) is
defined by

X(k)(s) = [X(k) − s∇f(X(k))]+.

Choose s(k)
init

> 0 and let s(k) be the largest element of {s(k)
init
ξj}j=0,1,... satis-

fying

(13) f(X(k)(s(k))) ≤ f(X(k))− σ〈∇f(X(k)), X(k)(s(k))−X(k)〉,
where 0 < ξ < 1 and 0 < σ < 1.

Note that the projection of the matrix S ∈ Sd, where Sd is the set of d× d
symmetric matrices, onto the set D is to find the solution of the following
minimization problem

min
X∈D

‖X − S ‖F .

The solution of the above problem is

[S]+ = UDiag(min(max(α∗, λ1), β∗), . . . ,min(max(α∗, λd), β∗)U
T ,
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where λ1 ≥ · · · ≥ λd are the eigenvalues of S and U is a corresponding orthog-
onal matrix of eigenvalues of S. This result can be found in [21]. It requires an
orthogonal diagonalization and so it can be expensive if d is large, say d ≥ 100.
Since GPM with (12) requires one projection per iteration, it can be more effi-
cient than GPM with (13) when d is large. Hence, in our implementation of the
gradient projection method, Armijo rule along the feasible direction is used.

In the following, we establish the global convergence of GPM. For the proof,
we refer to [4, Propositions 2.3.1 & 2.3.3].

Theorem 4.1. Let {X(k)} be the sequence generated by GPM with s(k) = 1
for all k and with t(k) chosen by Armijo rule along the feasible direction or with
t(k) = 1 for all k and with s(k) chosen by Armijo rule along the projection arc.
Then every limit point of {X(k)} is stationary.

By Theorem 3.1, f has Lipschitz continuous gradient.

(14) ‖∇f(Y )−∇f(Z) ‖ ≤ L‖Y − Z ‖ ∀Y, Z ∈ D
for some L ≥ 0. In this case, we can use a constant stepsize for GPM. That is,
s(k) is fixed at some constant, say 1, for all k and t(k) = 1

L , then we have

(15) X(k+1) = X(k) +
1

L
(X̄(k) −X(k)).

Or, for all k, s(k) = 1
L and t(k) is fixed at some constant, say 1, we get

(16) X(k+1) = [X(k) − 1

L
∇f(X(k))]+.

It is well-known that the above scheme (16) achieves a sublinear rate of con-
vergence. In other words, it can be shown that f(X(k)) − inf f ≤ O

(
L
k

)
. To

the best of our knowledge, GPM obtained by (15) has also the global sublinear
rate of convergence. However, this result has not been proved in detail. Now,
we establish an upper bound on the number of iterations for GPM obtained
by (15) to achieve ε-optimality in the following theorem. In other words, the
convergence rate is sublinear.

Theorem 4.2. Let {X(k)} be the sequence generated by GPM with s(k) = 1
for all k and with t(k) = 1

L and X∗ be the optimal solution. Then f(X(k)) −
f(X∗) ≤ ε if

k ≥
⌈

32Ld(β∗)
2

ε

⌉
.

Proof. Since the set D is convex and

(17) X̄(k) ∈ arg min
X∈D

〈∇f(X(k)), X〉+
1

2

∥∥∥X −X(k)
∥∥∥2

,

we have that, for α ∈ (0, 1),

〈∇f(X(k)), X̄(k)〉+
1

2

∥∥∥ X̄(k) −X(k)
∥∥∥2
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≤ 〈∇f(X(k)), X(k) + α(X̄(k) −X(k))〉+
α2

2

∥∥∥ X̄(k) −X(k)
∥∥∥2

.

Rearranging terms yields

(1− α)〈∇f(X(k)), D(k)〉 ≤ −(1− α2)
1

2

∥∥∥D(k)
∥∥∥2

, (D(k) := X̄(k) −X(k)).

Dividing both sides by 1− α > 0 and then taking α ↑ 1 implies that

(18) 〈∇f(X(k)), D(k)〉 ≤ −
∥∥∥D(k)

∥∥∥2

.

We have from the Cauchy-Schwarz inequality that

f(X(k+1))− f(X(k))

(19)

= 〈∇f(X(k)), X(k+1) −X(k)〉

+

∫ 1

0

〈∇f(X(k) + t(X(k+1) −X(k)))−∇f(X(k)), X(k+1) −X(k)〉dt

≤ 〈∇f(X(k)), X(k+1) −X(k)〉

+

∫ 1

0

∥∥∥∇f(X(k) + t(X(k+1) −X(k)))−∇f(X(k))
∥∥∥ · ∥∥∥X(k+1) −X(k)

∥∥∥dt
≤ 〈∇f(X(k)), X(k+1) −X(k)〉+

L

2

∥∥∥X(k+1) −X(k)
∥∥∥2

=
1

L
〈∇f(X(k)), D(k)〉+

1

2L

∥∥∥D(k)
∥∥∥2

≤ 1

2L
〈∇f(X(k)), D(k)〉,

where the second inequality uses the Lipschitz continuity of the gradient and
the third inequality uses (18).

By Fermat’s rule applied for (17) we have that for any X(k) ∈ D,

(20) X̄(k) ∈ arg min
X∈D

〈∇f(X(k)) + X̄(k) −X(k), X〉.

Then we have

〈∇f(X(k)) + X̄(k) −X(k), X̄(k)〉 ≤ 〈∇f(X(k)) + X̄(k) −X(k), X∗〉.

Subtracting 〈∇f(X(k)) + X̄(k) −X(k), X(k)〉 from both sides of the above in-
equality implies that

〈∇f(X(k)) +D(k), D(k)〉 ≤ 〈∇f(X(k)) +D(k), X∗ −X(k)〉

≤ f(X∗)− f(X(k)) + 〈D(k), X∗ −X(k)〉,

where the second inequality uses the convexity of f . Thus

f(X(k))− f(X∗) ≤ 〈D(k), X∗ −X(k)〉 − 〈∇f(X(k)) +D(k), D(k)〉
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≤
∥∥∥D(k)

∥∥∥∥∥∥X∗ −X(k)
∥∥∥− 〈∇f(X(k)), D(k)〉

≤
∥∥∥D(k)

∥∥∥(‖X∗ ‖+
∥∥∥X(k)

∥∥∥)− 〈∇f(X(k)), D(k)〉

≤ 2
√
dβ∗

∥∥∥D(k)
∥∥∥− 〈∇f(X(k)), D(k)〉

≤ 2
√
dβ∗

√
−〈∇f(X(k)), Dk〉 − 〈∇f(X(k)), D(k)〉,(21)

where the fourth inequality is obtained from the fact that X(k) and X∗ are in
D and the fifth inequality uses (18). Combining (21) with (19) yields

(22) e(k) ≤ 2
√

2dLβ∗
√
e(k) − e(k+1) + 2L(e(k) − e(k+1)),

where e(k) = f(X(k))− f(X∗).
There are two cases that the difference between the objective values with

consecutive iterates takes. The first case is e(k) − e(k+1) ≥ 2d(β∗)2

L and the

second case is e(k) − e(k+1) < 2d(β∗)2

L . For the first case, the reduction of the

objective function value at the iteration k is at least 2d(β∗)2

L . But the reduction

is less than 2d(β∗)2

L for the second case. The second case is the worst one and
so we only consider this case.

From (22), we have e(k) ≤ 4
√

2dLβ∗
√
e(k) − e(k+1), and rearranging terms

yields

(23) e(k+1) ≤ e(k) − 1

32dL

(
e(k)

β∗

)2

.

We may assume e(k) > 0 for all k ≥ 0 (otherwise, e(k) ≤ ε) in (23). Then we
consider the reciprocals ξ(k) = 1/e(k). By (23) and e(k) > 0, we have

0 ≤ C1e
(k) < 1,

where C1 = 1
32dL(β∗)2 .

Thus (23) yields

ξ(k+1) − ξ(k) ≥ 1

e(k)(1− C1e(k))
− 1

e(k)
=

C1

1− C1e(k)
≥ C1.

This implies that if e(k) − e(k+1) ≥ 2d(β∗)2

L for all k ≥ 0, then

ξ(k) = ξ(0) +

k−1∑
i=0

(ξ(i+1) − ξ(i)) ≥ C1k

and consequently

e(k) =
1

ξ(k)
≤ 1

C1k
.

It follows that e(k) ≤ ε if

k ≥
⌈

32dL(β∗)
2

ε

⌉
. �
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From Theorem 4.2, the complexity bound on the number of iterations for
achieving ε-optimality can be O

(
L
k

)
. In other words, f(X(k))− inf f ≤ O

(
L
k

)
.

5. Accelerated gradient projection methods

In this section, we briefly describe an accelerated gradient projection method
based on [16,24, 28] for solving (6) and provide its faster global sublinear con-
vergence rate using the Lipschitz constant of the gradient function obtained
from Section 4.

There are several versions of accelerated methods; see [16, 24, 28] and refer-
ences therein. Since the projection can be expensive when the matrix dimension
is large, we adapt Algorithm 1 in [28] with h(·) = 1

2‖ · ‖
2
F and xk+1 = x̂k+1,

that requires only one projection. The algorithmic procedure for the acceler-
ated gradient projection method (AGPM) is formally given below.

Algorithm 2 AGPM

Choose X(0), Z(0) ∈ D, and t(0) ∈ (0, 1]. Initialize k = 0. Update X(k+1)

and Z(k+1) from X(k) and Z(k) by the following template:

Step 1.: Find Z(k+1) =
[
Z(k) − 1

t(k)L
∇f

(
X(k) + t(k)(Z(k) −X(k)

)]+
,

Step 2.: X(k+1) = (1− t(k))X(k) + t(k)Z(k+1).

Step 3.: t(k+1) =

√
(t(k))4+4(t(k))2−(t(k))2

2 .

In the next theorem, we provide the iteration complexity for AGPM. Its
proof can be easily induced from [28, Proposition 1].

Theorem 5.1. Let {X(k)}, {Z(k)}, and {t(k)} be the sequences generated by
AGPM with t(0) = 1 and X∗ be the optimal solution. Then

f(X(k))− f(X∗) ≤ 2L(t(k−1))2
∥∥∥Z(0) −X∗

∥∥∥2

.

Note that the stepsize t(k) with t(0) = 1 satisfies t(k) ≤ 2
k+2 [28] and so

f(X(k))− f(X∗) ≤ ε whenever k ≥

√
2L
∥∥Z(0) −X∗

∥∥
ε

− 1.

Thus it is shown that f(X(k))− inf f ≤ O
(
L
k2

)
.

6. Numerical results

We report the performance of GPM with Armijo rule (GPM-A), GPM with
constant stepsize (GPM-C), and AGPM on n randomly generated matrices of
the size d × d. The random matrices we use for our test are generated by
matlab code as follows:

for i = 1 : n
[Q, ] = qr(randn(d));
a{i} = Q ∗ diag(eiglb + eigub ∗ rand(d, 1)) ∗Q′;
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Table 1. Test results of the final objective values and CPU
time in seconds for three methods GPM-A, GPM-C, and
AGPM on 5 random data sets.

eiglb = 1, eigub = 99 eiglb = 0.1, eigub = 99.9

GPM-A GPM-C AGPM GPM-A GPM-C AGPM

1 obj -455.1073 -453.3906 -455.1008 -447.6930 -445.5805 -446.5237

CPU 387.5469 131.6250 130.3594 392.0469 129.3750 132.2188

2 obj -453.0401 -451.3390 -453.0314 -446.0910 -443.9959 -445.5426

CPU 390.4375 137.0469 131.0469 394.0938 133.0000 129.6250

3 obj -436.2434 -433.5503 -436.2426 -428.7903 -425.5745 -426.6294

CPU 393.9375 129.2031 129.6406 381.9063 129.1406 131.7188

4 obj -474.9703 -474.0734 -474.9663 -468.0361 466.9026 -467.8266

CPU 394.7969 131.0469 132.8281 386.6250 129.2031 131.4844

5 obj -457.9968 -456.5869 -457.9919 -450.8314 -449.0858 -449.6617

CPU 389.9219 130.1094 133.0000 388.7188 132.7031 130.5781

Note that the eigenvalues of generated matrices are randomly distributed in the
interval [eiglb, eiglb + eigub]. In our experiments, we set n = 100 and d = 10.
To observe the effect of the Lipschitz constant, we set eiglb = 1, eigub = 99
and eiglb = 0.1, eigub = 99.9. Hence, the Lipschitz constant of the latter
case is roughly 1000 times that of the former one. Note that we estimate the
Lipschitz constant by using the tight bound in Theorem 3.1. We terminate all
the algorithms when the number of iterations reaches 1000.

All runs are performed on a Laptop with Intel Core i7-3537U CPU (2.00GHz)
and 8GB Memory, running 64-bit windows 10 and MATLAB (Version 8.3).
Throughout the experiments, we choose the initial iterate to beX(0) = 0.5(Lmin

+Lmax)I for all algorithms and Z(0) = X(0), t(0) = 1 for AGPM. And we set
ξ = 0.5 and σ = 0.1 for GPM-A. We report in Table 1 our numerical results,
showing final objective value(obj) and total time(CPU) in seconds.

From Table 1, the objective value of APGM is less than that of GPM-C. This
supports that APGM has faster convergence rate than GPM-C. The objective
value of GPM-A is less than that of GPM-C and AGPM since GPM-A can
take larger stepsizes and so the objective values of GPM-A are reduced faster
than the other algorithms. But GPM-A takes more CPU time than GPM-C
and AGPM since it requires function evaluations at each iteration. In Table
1, the estimated Lipschitz constant for the test matrices with eiglb = 0.1 and
eigub = 99.9 is more than 1000 times bigger than that for the test matrices
with eiglb = 1 and eigub = 99. Then it is observed that the estimated Lipschitz
constant is smaller, the gap between the objective values of AGPM and that
of GPM-A is bigger. This is also shown in Figure 1.
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Figure 1. (a) Objective value versus iteration with eiglb = 1,
eigub = 99. (b) Objective value versus iteration with eiglb =
0.1, eigub = 99.9. The estimated Lipschitz constant in (b) is
more than 10 times bigger than that in (a). It is observed that
the estimated Lipschitz constant is smaller, the gap between
the objective value of AGPM and that of GPM-A is bigger.

7. Concluding remarks and future work

In this paper, we have proposed standard optimization methods, i.e., the gra-
dient projection method and its accelerated version, for computing the Wasser-
stein barycenter of Gaussian measures and analyzed their convergence prop-
erties. By using the estimation of the Lipschitz constant for the gradient, we
established the global sublinear rate of convergence of GPM that uses the pro-
jection to find the feasible direction. When the estimated Lipschitz constant is
relatively small, GPM with Armijo rule seems to be more efficient than AGPM.

There is another important barycenter on P (different from the Wasser-
stein barycenter) equipped with the Cartan-Hadamard trace metric 〈X,Y 〉A =
tr(A−1XA−1Y ). The Cartan barycenter has been studied extensively the past
several years by many authors as a multivariable extension of the two variable
matrix geometric mean [19, 20]. At present, the proximal point method with
sublinear convergence [3] seems to be the only global optimization method for
the Cartan barycenter. The optimization problem in this paper can be cast
as the corresponding one on the Riemannian manifold P with the Riemannian
metric

〈X,Y 〉A = Tr(XAY ) = Tr((XA
1
2 )(XA

1
2 )∗)

for X,Y ∈ TA(P) ≡ H, the tangent space at A ∈ P even though our gradient-
based algorithm is performed under the classical Euclidean setting rather than
the Riemannian space P.
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Many other questions remain open. One would like to show the strong
convexity of the objective function for more efficient optimization methods. In
the one-dimensional case, this is true. Moreover, our minimization problem is
of the form

arg min
X∈D

n∑
j=1

fj(X) + gj(X),

where fj(X) = wjtr(Aj + X) and gj(X) = −2wjtr(A
1
2
j XA

1
2
j )

1
2 are convex

functions on the compact and convex set D. The above problem is a classical
form for applying incremental methods especially when n is large [5, 23]. So
we can adapt incremental (gradient) methods to deal with the minimization
problem (6). The key ingredient of the Wasserstein barycenter is the matrix

valued map (A,B) 7→ (A
1
2BA

1
2 )

1
2 . We believe that there is a class of differen-

tiable functions F : P×P→ P satisfying strict convexity for the first or second
variable. Then the corresponding minimization problem arises naturally with
gj(X) = trF (Aj , X). A unified approach will be studied in our forthcoming
papers.
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[27] L. Rüschendorf and L. Uckelmann, On the n-coupling problem, J. Multivariate Anal. 81

(2002), no. 2, 242–258.
[28] P. Tseng, On accelerated proximal gradient methods for convex-concave optimization

Preprint http://www.mit.edu/∼dimitrib/PTseng/papers/apgm.pdf, 2008.

[29] C. Villani, Topics in Optimal Transportation, Graduate Studies in Mathematics, 58,
American Mathematical Society, Providence, RI, 2003.

[30] , Optimal Transport, Grundlehren der Mathematischen Wissenschaften, 338,
Springer-Verlag, Berlin, 2009.

Sangho Kum

Department of Mathematics Education

Chungbuk National University
Cheongju 28644, Korea

Email address: shkum@cbnu.ac.kr

Sangwoon Yun

Department of Mathematics Education

Sungkyunkwan University
Seoul 03063, Korea

Email address: yswmathedu@skku.edu


