• 제목/요약/키워드: Graded buffer

검색결과 20건 처리시간 0.188초

Effect of MoO3 Thickness on the Electrical, Optical, and structural Properties of MoO3 Graded ITO Anodes for PEDOT:PSS-free Organic Solar Cells

  • Lee, Hye-Min;Kim, Seok-Soon;Chung, Kwun-Bum;Kim, Han-Ki
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.478.1-478.1
    • /
    • 2014
  • We investigated $MoO_3$ graded ITO electrodes for organic solar cells (OSCs) without PEDOT:PSS buffer layer. The effect of $MoO_3$ thickness on the electrical, optical, and structural properties of $MoO_3$ graded ITO anodes prepared by RF/DC magnetron co-sputtering system using $MoO_3$ and ITO targets was investigated. At optimized conditions, we obtained $MoO_3$ graded ITO electrodes with a low sheet resistance of 13 Ohm/square, a high optical transmittance of 83% and a work function of 4.92 eV, comparable to conventional ITO films. Due to the existence of $MoO_3$ on the ITO electrodes, OSCs fabricated on $MoO_3$ graded ITO electrode without buffer layer successfully operated. Although OSCs fabricated on ITO anode without buffer layer showed a low power conversion efficiency of 1.249%, OSCs fabricated on $MoO_3$ graded ITO electrode without buffer layer showed a outstanding cell performance of 2.545%. OSCs fabricated on the $MoO_3$ graded ITO electrodes exhibited a fill factor of 61.275%, a short circuit current of 7.439 mA/cm2, an open circuit voltage of 0.554 V, and a power conversion efficiency of 2.545%. Therefore, $MoO_3$ graded ITO electrodes can be considered a promising transparent electrode for cost efficient and reliable OSCs because it could eliminate the use of acidic PEDOT:PSS buffer layer.

  • PDF

Fabrication and Characterization of $0.2\mu\textrm{m}$ InAlAs/InGaAs Metamorphic HEMT's with Inverse Step-Graded InAlAs Buffer on GaAs Substrate

  • Kim, Dae-Hyun;Kim, Sung-Won;Hong, Seong-Chul;Paek, Seung-Won;Lee, Jae-Hak;Chung, Ki-Woong;Seo, Kwang-Seok
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제1권2호
    • /
    • pp.111-115
    • /
    • 2001
  • Metamorphic InAlAs/InGaAs HEMT are successfully demonstrated, exhibiting several advantages over conventional P-HEMT on GaAs and LM-HEMT on InP substrate. The strain-relaxed metamorphic structure is grown by MBE on the GaAs substrate with the inverse-step graded InAlAs metamorphic buffer. The device with 40% indium content shows the better characteristics than the device with 53% indium content. The fabricated metamorphic HEMT with $0.2\mu\textrm{m}$T-gate and 40% indium content shows the excellent DC and microwave characteristics of $V_{th}-0.65V,{\;}g_{m,max}=620{\;}mS/mm,{\;}f_T120GHZ{\;}and{\;}f_{max}=210GHZ$.

  • PDF

AlAsxSb1-x 단계 성분 변화 완충층을 이용한 Si (100) 기판 상 Al0.3Ga0.7As/GaAs 다중 양자 우물 형성 (Formation of Al0.3Ga0.7As/GaAs Multiple Quantum Wells on Silicon Substrate with AlAsxSb1-x Step-graded Buffer)

  • 이은혜;송진동;연규혁;배민환;오현지;한일기;최원준;장수경
    • 한국진공학회지
    • /
    • 제22권6호
    • /
    • pp.313-320
    • /
    • 2013
  • 실리콘(Silicon, Si) 기판과 $Al_{0.3}Ga_{0.7}As$/GaAs 다중 양자 우물(multiple quantum wells, MQWs) 간의 격자 부정합 해소를 위해 $AlAs_xSb_{1-x}$ 층이 단계 성분 변화 완충층(step-graded buffer, SGB)으로 이용되었다. $AlAs_xSb_{1-x}$ 층 상에 형성된 GaAs 층의 RMS 표면 거칠기(root-mean-square surface roughness)는 $10{\times}10{\mu}m$ 원자 힘 현미경(atomic force microscope, AFM) 이미지 상에서 약 1.7 nm로 측정되었다. $AlAs_xSb_{1-x}$/Si 기판 상에 AlAs/GaAs 단주기 초격자(short period superlattice, SPS)를 이용한 $Al_{0.3}Ga_{0.7}As$/GaAs MQWs이 형성되었다. $Al_{0.3}Ga_{0.7}As$/GaAs MQW 구조는 약 10 켈빈(Kalvin, K)에서 813 nm 부근의 매우 약한 포토루미네선스(photoluminescence, PL) 피크를 보였고, $Al_{0.3}Ga_{0.7}As$/GaAs MQW 구조의 RMS 표면 거칠기는 약 42.9 nm로 측정되었다. 전자 투과 현미경(transmission electron microscope, TEM) 단면 이미지 상에서 AlAs/GaAs SPS 로부터 $Al_{0.3}Ga_{0.7}As$/GaAs MQWs까지 격자 결함들(defects)이 관찰되었고, 이는 격자 결함들이 $Al_{0.3}Ga_{0.7}As$/GaAs MQW 구조의 표면 거칠기와 광 특성에 영향을 주었음을 보여준다.

가스원 분자선 에피택시 증착법에 의한 $Si/Si_{1-x}Ge_x$ MODFET 구조의 미세조직과 전기이동도에 관한 연구 (Microstructures and electron mobilities of $Si/Si_{1-x}Ge_x$ MODFET structures grown by gas-source MBE)

  • 이원재
    • 한국결정성장학회지
    • /
    • 제9권2호
    • /
    • pp.207-211
    • /
    • 1999
  • 가스원 분자선 에피택시(GS-MBE)로 성장시킨 $Si/Si_{1-x}Ge_x$ MODFET의 미세조직을 투과식 전자현미경과 간섭광학현미경을 이용하여 관찰하였다. 증착온도변화에 따른 불일치전위의 분포에 큰 변화는 없었지만, 증착온도가 높을수록 표면조도가 거칠어졌고 표면 결함이 나타났다. Si 전기활성층 근처에서는 조성경사기능층보다 전위밀도가 상당히 낮았다. 결정성장 온도를 낮춤에 따라 전기이동도는 증가하였다.

  • PDF

Zno/nip-SiC:H/금속기판 구조 비정질 실리콘 태양전지의 후면 ZnO 및 완충층 삽입 효과에 대한 컴퓨터 수치해석 (Computer simulation for the effects of inserting the textured ZnO and buffer layer in the rear side of ZnO/nip-SiC: H/metal type amorphous silicon solar cells)

  • 장재훈;임광수
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1994년도 하계학술대회 논문집 C
    • /
    • pp.1277-1279
    • /
    • 1994
  • In the structure of ZnO/nip-SiC: H/metal substrate amorphous silicon (a-Si:H) solar cells, the effects of inserting a rear textured ZnO in the p-SiC:H/metal interface and a graded bandgap buffer layer in the i/p-SiC:H have been analysed by computer simulation. The incident light was taken to have an intensity of $100mW/cm^2$(AM-1). The thickness of the a-Si:H n, ${\delta}$-doped a-SiC:H p, and buffer layers was assumed to be $200{\AA},\;66{\AA}$, and $80{\AA}$, respectively. The scattering coefficients of the front and back ZnO were taken to be 0.2 and 0.7, respectively. Inserting the rear buffer layer significantly increases the open circuit voltage($V_{oc}$) due to reduction of the i/p interface recombination rate. The use of textured ZnO markedly improves collection efficiency in the long wavelengths( above ${\sim}550nm$ ) by back scattering and light confinement effects, resulting in dramatic enhancement of the short circuit current density($J_{sc}$). By using the rear buffer and textured ZnO, the i-layer thickness of the ceil for obtaining the maximum efficiency becomes thinner(${\sim}2500{\AA}$). From these results, it is concluded that the use of textured ZnO and buffer layer at the backside of the ceil is very effective for enhancing the conversion efficiency and reducing the degradation of a-Si:H pin-type solar cells.

  • PDF

고추잠자리의 精子完成의 電子顯微鏡的 硏究 (An Electron Microscopy of Spermiogenesis in the Dragonfly, Crocothemis servilia Drury)

  • 백경기;최춘근;이국범
    • 한국동물학회지
    • /
    • 제15권3호
    • /
    • pp.133-147
    • /
    • 1972
  • 고추잠자리(Crocothemis servilia Drury)의 精子完成過程을 究明하기 爲하여, 本 硏究에 着手한 바, 다른 無脊椎動物의 精子完成過程에서 이미 밝혀진 構造들과 比較해 가면서 特殊한 分化相을 觀察한 結果, 첫째 核의 染色質이 漸次 濃縮되기 始作함에 따라서 核의 모양도 球形에서 楕圓形으로, 楕圓形에서 圓錐形으로 變하였으며 둘째로 核이 細胞의 一極端으로 移動하고 核의 尾部가 陷入되며 셋째 中心粒이 核 陷入 部位에 位置하여 여기에서부터 軸 가 形成된다. 넷째는 골지體에서 起因된 尖體顆粒은 核의 先端으로 移動되어 결국 尖體를 形成하게 된다.

  • PDF

Thin Film Si-Ge/c-Si Tandem Junction Solar Cells with Optimum Upper Sub- Cell Structure

  • Park, Jinjoo
    • Current Photovoltaic Research
    • /
    • 제8권3호
    • /
    • pp.94-101
    • /
    • 2020
  • This study was trying to focus on achieving high efficiency of multi junction solar cell with thin film silicon solar cells. The proposed thin film Si-Ge/c-Si tandem junction solar cell concept with a combination of low-cost thin-film silicon solar cell technology and high-efficiency c-Si cells in a monolithically stacked configuration. The tandem junction solar cells using amorphous silicon germanium (a-SiGe:H) as an absorption layer of upper sub-cell were simulated through ASA (Advanced Semiconductor Analysis) simulator for acquiring the optimum structure. Graded Ge composition - effect of Eg profiling and inserted buffer layer between absorption layer and doped layer showed the improved current density (Jsc) and conversion efficiency (η). 13.11% conversion efficiency of the tandem junction solar cell was observed, which is a result of showing the possibility of thin film Si-Ge/c-Si tandem junction solar cell.

KSTAR TOKAMAK을 위한 저온시스템의 설계 (The Design of Cryogenic System for KSTAR TOKAMAK)

  • 김동락;오영국;정영수;이정민;최창호;임기학;허남일;김양수;박영민
    • 한국초전도저온공학회:학술대회논문집
    • /
    • 한국초전도저온공학회 2001년도 학술대회 논문집
    • /
    • pp.48-49
    • /
    • 2001
  • Cryogenic technology is one of the key technologies for fusion reactor equipped with superconducting coil for plasma confinement. The KSTAR(Korea Superconducting Tokamak Advanced Research)Project is in progress since 1996. Major parameters of the KSTAR tokamak are : major radius 1.8m, minor radius 0.5m, toroidal field 3.5 Tesla and plasma current 2MA with a strongly shaped plasma cross-section and double -null diverter. Considering practical engineering constraints, the KSTAR device is designed for a pulse length of 300 sec in up-graded operation mode but in the initial configuration would provide a pulse length of 20 sec provided by the poloidal coil system in base-line operation mode. The cryogenic system is composed as follows : cold box, helium compressor system, distribution box, helium gas buffer tank, helium gas purifying system, gas recovery system, liquid helium storage dewar, current lead box, current bus line and liquid nitrogen storage tank.

  • PDF

Computer-simulation with Different Types of Bandgap Profiling for Amorphous Silicon Germanium Thin Films Solar Cells

  • 조재현;이준신
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.320-320
    • /
    • 2014
  • Amorphous silicon alloy (a-Si) solar cells and modules have been receiving a great deal of attention as a low-cost alternate energy source for large-scale terrestrial applications. Key to the achievement of high-efficiency solar cells using the multi-junction approach is the development of high quality, low band-gap materials which can capture the low-energy photons of the solar spectrum. Several cell designs have been reported in the past where grading or buffer layers have been incorporated at the junction interface to reduce carrier recombination near the junction. We have investigated profiling the composition of the a-SiGe alloy throughout the bulk of the intrinsic material so as to have a built-in electrical field in a substantial portion of the intrinsic material. As a result, the band gap mismatch between a-Si:H and $a-Si_{1-x}Ge_x:H$ creates a barrier for carrier transport. Previous reports have proposed a graded band gap structure in the absorber layer not only effectively increases the short wavelength absorption near the p/i interface, but also enhances the hole transport near the i-n interface. Here, we modulated the GeH4 flow rate to control the band gap to be graded from 1.75 eV (a-Si:H) to 1.55 eV ($a-Si_{1-x}Ge_x:H$). The band structure in the absorber layer thus became like a U-shape in which the lowest band gap was located in the middle of the i-layer. Incorporation of this structure in the middle and top cell of the triple-cell configuration is expected to increase the conversion efficiency further.

  • PDF