• Title/Summary/Keyword: Gold thin-film

Search Result 137, Processing Time 0.029 seconds

Design and Characterization of HTS antenna array with sequential rotation array (순차적 순환배열을 이용한 고온초전도 배열 안테나 설계 및 특성해석)

  • Chung, D.C.;Hwang, J.S.;Kim, Y.M.;Choi, H.S.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.77-81
    • /
    • 2006
  • We report the performance of a four-element, 11.67 GHz, high-Tc superconducting (HTS) microstrip antenna array with corporate feed network and circular polarization for direct broadcasting satellite (DBS) system. Our array antennas were designed and built on a 0.5 mm thick MgO substrate. To compare the superconducting antennas with normal conducting counterpart, One antenna pattern was fabricated from gold thin film, and a second pattern was fabricated from $YBa_2Cu_3O_{7-x}$ (YBCO) superconducting thin film. To improve the axial ratio of circularly polarized arrays, sequential rotation technique were used. Efficiency, radiation pattern, return loss and bandwidth were measured for both antennas at room temperature and at cryogenic temperature. The array produced good circular polarization, and the gain of the array at 77 K, relative to a copper array at room temperature was approximately 1.54 dB. The measured return loss of our HTS antenna array was 35.79 dB at the resonant frequency of 11.67 GHz and The total effective bandwidth was about 3.4 %. The results showed that high-temperature superconductors, when used in microstrip arrays, improved the efficiency of the HTS antenna array for circularly polarization.

  • PDF

Study on HTS Antenna Array with Circularly Polarization for DBS Receiver (직접 위성방송 수신용 원편파 HTS 배열 안테나 관한 연구)

  • 정동철;윤창훈;최효상
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.7
    • /
    • pp.776-781
    • /
    • 2004
  • We report the performance of a four-element, 11.67 GHz, $high-{T}_c$ superconducting (HTS) microstrip antenna array with corporate feed network. The HTS antenna array used in this work had a circular polarization for direct broadcasting satellite (DBS) system. Our array antennas were designed and built on a 0.5 mm thick MgO substrate. To compare the superconducting antennas with normal conducting counterpart, One antenna pattern was fabricated from gold thin film, and a second pattern was fabricated from ${YBa}_2{Cu}_3{O}_7-x(YBCO)$ superconducting thin film. To improve the axial ratio of circularly polarized arrays, sequential rotation technique were used. Efficiency, radiation pattern, return loss and bandwidth were measured for both antennas at cryogenic temperature and room temperature. The array produced good circular polarization, and the gain of the array at 77 K, relative to a copper array at room temperature was approximately 1.54 dB. The measured return loss of our HTS antenna array was 35.79 dB at the resonant frequency of 11.67 GHz and The total effective bandwidth was about 3.4 %. The results showed that high-temperature superconductors, when used in microstrip arrays, improved the efficiency of the HTS antenna array for circularly polarization.

A Study of Heat Flux on the Height of an Instantaneous Temperature Probe in a Constant Volume Combustion Chamber (정적 연소기에서 순간온도 프로브의 돌출높이에 따른 열유속에 관한 연구)

  • Lee, C.W.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.16 no.4
    • /
    • pp.216-223
    • /
    • 2003
  • In the production of internal combustion engines, there have been trends to develop the high performance engines with improved fuel efficiency, lighter weights and smaller sizes. This trends help to answer problems related to thermal load and abnormal combustion, etc. in these engines. In order to investigate these problems, a thin film-type probe and its manufacturing method for instantaneously measuring surface-temperatures have been proposed in this study, Instantaneous surface temperature of a constant volume combustion chamber was measured by this probe and heat flux was obtained by Fourier analysis. In order to thoroughly understand the characteristics of combustion, the authors measured the wall temperature of the combustion chamber and computed heat flux through a cylinder wall while varying the protrusion height of the probe have been measured. To achieve the above goals, a instantaneous temperature probe was developed, thereby making possible the analysis of the instantaneous temperature of wall surface and the detection of unsteady heat flux in the constant volume combustion chamber.

Ionic Passivation and Oxidation Dynamics for Enhanced Viability of Copper-Based On-Skin Bioelectrodes in Biological Environments

  • Jungho Lee;Gaeun Yun;Juhyeong Jeon;Phuong Thao Le;Seung Whan Kim;Geunbae Lim
    • Journal of Sensor Science and Technology
    • /
    • v.32 no.6
    • /
    • pp.352-356
    • /
    • 2023
  • The integration of bioelectronic devices with the skin is a promising strategy for personalized healthcare monitoring and diagnostics. On-skin bioelectrodes hold great potential for the real-time tracking of physiological parameters. However, persistent challenges of stability and reliability have instigated exploration beyond conventional noble metals. This study focuses on the ionic passivation and oxidation dynamics of copper-based on-skin thin-film bioelectrodes. Through parylene chemical vapor deposition, we harness a controlled thin film of parylene insulation to counter the intrinsic susceptibility of copper to oxidation in the ionic environment. The results represent the relationship among the parylene insulation thickness, copper oxidation, and electrode impedance over temporal intervals. Comparative analyses indicate that the short-term stability of the copper electrode is comparable to that of the gold electrode. Therefore, we propose a cost-effective strategy for fabricating copper-based on-skin bioelectrodes by introducing enhanced ionic stability within a discernible operational timeframe. This study enriches our understanding of on-skin bioelectronics and affordable material choices for practical use in wearable healthcare devices.

Development of SPR Gas Sensor for Small Molecules Using Molecularly Imprinted Polymer Thin Films

  • Jang, Seong-U;Jin, Seong-Il;Park, Chan-Ryang
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.242.2-242.2
    • /
    • 2011
  • Molecularly imprinted polymer thin films were applied to develop a gas sensor based on the surface plasmon resonance phenomenon for small gaseous molecules such as toluene and xylene. The imprinted polymer films were synthesized via photo-polymerization method using various combination of templates, functional monomers and cross-linkers. The temperature of pre-polymerization solutions and the power of UV light were controlled for optimized performance of gas sensing. The morphology and porosity of the polymer films were controlled by varying the mixing ratios of the pre-polymerization solutions and confirmed by atomic force microscopy. By fitting the adsorption/desorption sensorgrams to conventional kinetic models, the effects of different templates and cross-linkers were interpreted in term of the structural differences of the polymer networks formed on the gold film. The sensitivity and selectivity of sensors were estimated for toluene and xylene, and also for humidity and other gaseous molecules such as formaldehyde and ammonia.

  • PDF

Measurement of In-plane Piezoelectric Charge Constant of Electro-Active Paper (Electro-Active Paper의 면내압전상수 측정)

  • Li, Yuanxie;Yun, Gyu-Young;Kim, Heung-Soo;Kim, Jae-Hwan
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.943-946
    • /
    • 2007
  • In-plane piezoelectric charge constant of Electro-Active paper (EAPap) was investigated based on direct and converse piezoelectric effects. EAPap samples were made with cellulose film with very thin gold electrode coated on both sides of the film. To characterize direct piezoelectricity of EAPap, induced charge was measured when mechanical stress was applied to EAPap. In-plane piezoelectric charge constant was extracted from the relation between induced charge and applied in-plane normal stress. To investigate converse piezoelectricity, induced in-plane strain was measured when electric field was applied to EAPap. Piezoelectric charge constant was also extracted from the relation of induced in-plane strain and applied electric field. Piezoelectric charge constants obtained from direct and converse piezoelectricity are 31 pC/N and 178 x 10-12m/V for 45 degree sample, respectively. Measured piezoelectric charge constants of EAPap provide promising potential as a piezoelectric material.

  • PDF

Resistance distribution in large area thin film type SFCLS (박막형 대면적 초전도 한류소자에서의 저항 분포)

  • 김혜림;최효상;현옥배
    • Progress in Superconductivity and Cryogenics
    • /
    • v.4 no.1
    • /
    • pp.89-93
    • /
    • 2002
  • We investigated the resistance distribution n 4"diameter SFCLS. $YBa_2CU_3O_7$ films coated in-situ with a gold layer were patterned into 3 mm wide 142 cm long meander lines by Photolithography. The limiters were tested with simulated fault currents. The resistance was uniform all over the film except at the edge. At lower source voltages, CFCLs did not quench simultaneously and the resistance distribution was less uniform. Compared with 2" diameter SFCLS 4" SFCLS had similar values and time dependence of resistivity at similar electric fields The resistance distribution was more uniform in 4" SFCLS. The area at the edge where the distribution was not uniform was around 3 mm wide in SFCLs of both sizes. The experimental results were quantitatively explained with a heat transfer concept.

Quench propagation in resistive SFCL (저항형 초전도 한류기에서의 퀀치 전파)

  • 김혜림;현옥배;최효상;황시돌;김상준
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.13 no.4
    • /
    • pp.337-342
    • /
    • 2000
  • We fabricated resistive superconducting fault current limiters based on YB $a_{2}$/C $u_{3}$/ $O_{7}$ thin films and investigated their quench propagation characteristics. The YB $a_{2}$/C $u_{3}$/ $O_{7}$ films was coated with a gold layer and patterned into 1 mm wide meander lines by photolithography. The quench was concluded to start locally and propagates until completed. The quench propagation characteristics were explained based on the heat transfer within the film as well as between the film and the surrounding liquid nitrogen. The quench completion time depended strongly on potential fault current amplitude and not significantly on fault angle which indicates that the quench propagation speed is affected more by heat dissipation rate than by fault current increase rate. The quench completion time was 1 msec at the fault current of 65 $A_{peak/{\ak}}$.

  • PDF

Preparation of Conducting Polymer PEDiTT Thin Film Using SAM Method (자기조립법을 이용한 전도성고분자 PEDiTT박막의 제조)

  • 손용근;강규식;심창용;최정식;이두연
    • Polymer(Korea)
    • /
    • v.26 no.5
    • /
    • pp.589-598
    • /
    • 2002
  • thiathlophene (EDiTT) was synthesized. The yield of the synthesis was about 29%. The monomer was identified by using NMR, IR and UV/Vis spectroscopic methods. Poly (3,4-ethylenedithiathiophene) (PEDiTT) was prepared using this monomer and FeCl$_3$. The deep blue green color of the product was changed into brown color by the reduction with $N_2$H$_4$. This was soluble to common organic solvents. Spectroelectrochemistry was used to characterize the PEDiTT. NMP was the best solvent for PEDiTT. PEDiTT/NMP solution was used for making SAM type thin film of the polymer on gold electrode. Electrochemical and IR spectroscopic methods were used to identify the thin film.

Performance of Pentacene-based Thin-film Transistors Fabricated at Different Deposition Rates (증착 속도에 따른 펜타센 박막 트랜지스터의 성능 연구)

  • Hwang, Jinho;Kim, Duri;Kim, Meenwoo;Lee, Hanju;Babajanyan, Arsen;Odabashyan, Levon;Baghdasaryan, Zhirayr;Lee, Kiejin;Cha, Deokjoon
    • New Physics: Sae Mulli
    • /
    • v.68 no.11
    • /
    • pp.1192-1195
    • /
    • 2018
  • We studied the electrical properties of organic thin-film transistors (OTFTs) fabricated at different deposition rates by measuring the field-effect mobility and the threshold voltages. As the active layer, pentacene thin film with a thickness of 50 nm was deposited at a rate of $0.05{\AA}/s$ to $1.14{\AA}/s$. The thickness of the drain-source gold electrode was 50 nm. The mobility was $1.9{\times}10^{-1}cm^2/V{\cdot}s$ at a deposition rate of $0.05{\AA}/s$, the mobility increased to $5.2{\times}10^{-1}cm^2/V{\cdot}s$ when the deposition rate was increased to $0.4{\AA}/s$, and then the mobility decreased to $6.5{\times}10^{-1}cm^2/V{\cdot}s$ when the deposition rate decreased to $1.14{\AA}/s$. Thus, the mobility of pentacene OTFTs was observed to depend on the thermal deposition rate.