Browse > Article
http://dx.doi.org/10.3938/NPSM.68.1192

Performance of Pentacene-based Thin-film Transistors Fabricated at Different Deposition Rates  

Hwang, Jinho (Department of Physics, Sogang University)
Kim, Duri (Department of Physics, Sogang University)
Kim, Meenwoo (Department of Physics, Sogang University)
Lee, Hanju (Department of Physics, Sogang University)
Babajanyan, Arsen (Department of Physics, Sogang University)
Odabashyan, Levon (Department of Physics, Sogang University)
Baghdasaryan, Zhirayr (Department of Physics, Sogang University)
Lee, Kiejin (Department of Physics, Sogang University)
Cha, Deokjoon (Department of Physics, Kunsan National University)
Abstract
We studied the electrical properties of organic thin-film transistors (OTFTs) fabricated at different deposition rates by measuring the field-effect mobility and the threshold voltages. As the active layer, pentacene thin film with a thickness of 50 nm was deposited at a rate of $0.05{\AA}/s$ to $1.14{\AA}/s$. The thickness of the drain-source gold electrode was 50 nm. The mobility was $1.9{\times}10^{-1}cm^2/V{\cdot}s$ at a deposition rate of $0.05{\AA}/s$, the mobility increased to $5.2{\times}10^{-1}cm^2/V{\cdot}s$ when the deposition rate was increased to $0.4{\AA}/s$, and then the mobility decreased to $6.5{\times}10^{-1}cm^2/V{\cdot}s$ when the deposition rate decreased to $1.14{\AA}/s$. Thus, the mobility of pentacene OTFTs was observed to depend on the thermal deposition rate.
Keywords
Organic thin film transistor; Deposition rate; Pentacene; Mobility;
Citations & Related Records
연도 인용수 순위
  • Reference
1 J. E. Lilienfeld, Method and Apparatus for Controlling Electric Currents, US Patent 1,745,175, 1930.
2 A. Tsumura, H. Koezuka and T. Ando, Appl. Phys. Lett. 49, 1210 (1986).   DOI
3 D. Guo, S. Ikeda, K. Saiki, H. Miyazoe and K. Terashima, J. Appl. Phys. 99, 094502 (2006).   DOI
4 C. H. Wang, C. Y. Hsieh and J. C. Hwang, Adv. Mater. 23, 1630 (2011).   DOI
5 C. Luo, A. K. K. Kyaw, L. A. Perez, S. Patel and M. Wang et al., Nano Lett. 14, 2764 (2014).   DOI
6 H. Sirringhaus, Adv. Mater. 26, 1319 (2014).   DOI
7 C.-a. Di, Y. Liu, G. Yu and D. Zho, Acc. Chem. Res. 42, 1573 (2009).   DOI
8 R. Ruiz, D. Choudhary, B. Nickel, T. Toccoli and K. C. Chang et al., Chem. Mater. 16, 4497 (2004).   DOI
9 H. Yanagisawa, T. Tamaki, M. Nakamura and K. Kudo, Thin Solid Films 464-465, 398 (2004).   DOI
10 D. He, J. Qiao, L. Zhang, J. Wang and T. Lan et al., Sci. Adv. 3, 1701186 (2017).   DOI
11 S. Jung, C. Kim, Y. Bonnassieux and G. Horowitz, J. Phys. D: Appl. Phys. 48, 035106 (2015).   DOI
12 Y.-W. Wang and H.-L. Cheng, Solid State Electron. 53, 1107 (2009).   DOI
13 I. V. K. Rao, S. Mandal, M. Katiyar, in International Workshop on Physics of Semiconductor Devices (IIT Mumbai, India, Dec. 16-20, 2007), pp. 625-627.