Preparation of Conducting Polymer PEDiTT Thin Film Using SAM Method

자기조립법을 이용한 전도성고분자 PEDiTT박막의 제조

  • Published : 2002.09.01

Abstract

thiathlophene (EDiTT) was synthesized. The yield of the synthesis was about 29%. The monomer was identified by using NMR, IR and UV/Vis spectroscopic methods. Poly (3,4-ethylenedithiathiophene) (PEDiTT) was prepared using this monomer and FeCl$_3$. The deep blue green color of the product was changed into brown color by the reduction with $N_2$H$_4$. This was soluble to common organic solvents. Spectroelectrochemistry was used to characterize the PEDiTT. NMP was the best solvent for PEDiTT. PEDiTT/NMP solution was used for making SAM type thin film of the polymer on gold electrode. Electrochemical and IR spectroscopic methods were used to identify the thin film.

티오펜의 3번과 4번 탄소에 치환기를 보유할 폴리티오펜계 전도성 고분자의 유도체를 얻기위하여 단량체로 ethylenedithiathiophene (EDiTT)을 합성하였다. 생성물을 핵자기 공명법, 적외선 분광법, 자외/가시광선 분광법 등 분광학적인 방법으로 확인하였다. 이 합성의 수율은 29%였다. 이 단량체를 중합하여 전도성 고분자 poly(3,4-ethylenedithiathiophene)(PEDiTT)을 합성하였다. 중합을 위하여 FeCl$_3$를 이용하였으며, 생성물은 매우 짙은 청록색을 나타내었으며 $N_2$H$_4$로 환원시키면 갈색으로 변한다. 이 갈색의 고분자는 몇 가지 유기용매에 대한 용해성이 매우 높았다. 이 고분자의 분광 전기화학 특성을 조사하여 확인하였다. 이 PEDiTT은 NMP에 특히 잘 용해되는 성질을 나타내어, PEDiTT/NMP 용액과 금 전극을 이용하여 단분자성 박막(SAM)을 제조하였다. 전기화학 방법 및 적외선 분광법을 이용하여 이 박막의 형성을 확인할 수 있었다.

Keywords

References

  1. Contemporary Topics in Polymer Science v.Ⅴ A.G. Baughman;E.J. Vandenberg(ed.)
  2. Handbook of Organic Conductive Molecules and Polymer v.Ⅳ C. Arbizzano;M. Mastrasostino;B. Scrosato;H.S. Nalwa(ed.)
  3. Electrochimica Acta. v.47 C. Weidlich;K.M. Mangold;K. Juttner https://doi.org/10.1016/S0013-4686(01)00754-X
  4. Polym.Mater.Sci.Eng. v.53 K.Y. Jen;R. Obodi;R.L. Elsenbaumer
  5. Macromolecules v.20 S. Hotta;S.D.D.V. Rughooputh;A.J. Heeger;F. Wudl https://doi.org/10.1021/ma00167a038
  6. Makromol.Chem. v.190 M. Leclerc;F. Diza;G. Wegner https://doi.org/10.1002/macp.1989.021901208
  7. J.Electroanal.Chem. v.161 G. Gourillon;F. Garnier https://doi.org/10.1016/S0022-0728(84)80249-1
  8. J.Phys.Chem. v.91 J. Roncali;R. Garreau;A. Yassar;P. Marque;F. Garnier;M. Lemaire https://doi.org/10.1021/j100311a030
  9. Chem.Mater. v.6 C. Wang;M. Benz;E. LeGoff;J.L. Schindler;C.R. Kannewurt;M.G. Kanatzidis https://doi.org/10.1021/cm00040a012
  10. Adv.Mater. v.4 G. Heywang;F. Jonas https://doi.org/10.1002/adma.19920040213
  11. Macromolecules v.30 B. Sankaran;J.R. Reynolds https://doi.org/10.1021/ma961607w
  12. Macromol.Symp. v.100 M. Jonas;W. Krafft;B. Muys https://doi.org/10.1002/masy.19951000127
  13. Adv.Mater. v.11 W.H. Huynh;X. Peng;A.P. Alivisatos https://doi.org/10.1002/(SICI)1521-4095(199908)11:11<923::AID-ADMA923>3.0.CO;2-T
  14. Polymer(Korea) v.23 Y. Lee;J. Lee;Y. Son;Y.H. Park;D.H. Baik
  15. Chem.Mater. v.7 C. Wang;J.L. Schindler;C.R. Kannewurf;M.G. Kanatzidis https://doi.org/10.1021/cm00049a011
  16. Syn.Met. v.75 Z. Gao;K.S. Siow;H.S.O. Chan https://doi.org/10.1016/0379-6779(95)03384-V
  17. Langmuir v.12 M.H. Dishner;J.C. Hemminger;F.J. Feher https://doi.org/10.1021/la960840k
  18. Jpn.J.Appl.Phys. T. Matsmura;T. Takamura;Y. Shimoyama
  19. Syn.Comm. v.28 F. Goldoni;M.W. Langeveld-Voss;E.W. Meijer https://doi.org/10.1080/00397919808007039
  20. Mol.Cryst.and Liq.Cryst. v.349 Y. Son;H.J. Park;J.S. Choi;Y. Lee https://doi.org/10.1080/10587250008024934
  21. Syn.Met. v.84 Y. Son;J.S. Choi;K.S. Jang;J.S. Suh;E.J. Oh;J. Joo;J.H. Cho https://doi.org/10.1016/S0379-6779(97)80700-X
  22. Chem.Mater. v.10 A. Kumar;D.M. Welsh;M.C. Morvant;F. Pironx;K.A. Abboud;J.R. Reynolds https://doi.org/10.1021/cm9706614
  23. Sold State Ionics v.69 J.C. Gustafsson;B. Liedberg;O. Inganas https://doi.org/10.1016/0167-2738(94)90403-0
  24. Chem.Mater. v.8 E.E. Havinga;C.M.J. Mustaers https://doi.org/10.1021/cm9504551
  25. J.Phys.Chem. v.100 X. Chen;O. Inganas https://doi.org/10.1021/jp9601779
  26. Syn.Met. v.88 T. Yohannes;J.C. Carlberg;O. Inganas;T. Solomon https://doi.org/10.1016/S0379-6779(97)80878-8
  27. J.Am.Chem.Soc. v.109 M.D. Poter;T.B. Bright;D.L. Allara;C.E.D. Chidesy https://doi.org/10.1021/ja00246a011