• 제목/요약/키워드: Glucose polymer

검색결과 108건 처리시간 0.028초

Application for Measuring the Glucose, Ammonia nitrogen, and Tylosin Concentration using Near Infrared Spectroscopy

  • Kim, Jong-Soo;Cho, Hoon
    • 환경위생공학
    • /
    • 제23권2호
    • /
    • pp.19-25
    • /
    • 2008
  • For measurement of tylosin, ammonia nitrogen, and glucose concentration during the culture of Streptomyces fradiae using Near Infrared Spectroscopy, the calibration using various mathematical models was performed and then, based on the linear model, the validation was carried out. In the case of sucrose concentration using the MLR method, the Standard Error of Prediction and Multiple correlation coefficient were 1.97, and 0.991, respectively. In the case of ammonia nitrogen concentration using the PLSR method, the Standard Error of Prediction and Multiple correlation coefficient were 0.13, and 0.990, respectively. In the case of tylosin concentration using the PLSR method, the standard Error of Prediction and Multiple correlation coefficient were 0.54, and 0.984, respectively.

Biosynthesis of polyhydroxybutyrate and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) by bacillus thuringiensis R-510

  • Park, Sang-Kyu;Lee, Kang-Tae;Kim, Young-Baek;Rhee, Young-Ha
    • Journal of Microbiology
    • /
    • 제35권2호
    • /
    • pp.127-133
    • /
    • 1997
  • Biosynthesis of polyhydroxybutyrate and copolymer consisting of 3-hydroxybutyrate and 3-hydroxyvalerate [poly(3HB-co-3HV)] by Bacillus thuringiensis R-510 grown with glucose or with mixtures of glucose and propionate was investigated. n-Alkanoic acids other than propionate were not precursors of 3HV units. The fraction of 3HV unit in the copolymer increased from 0 to 84 mol% of 3HV. Polymer yield decreased as the fraction of propionate was increased but the molecular weight distribution was not affected by the composition of carbon substrate. The minimum melting temperature (around 65.deg.C) of poly (3HB-co-3HV) copolymers was observed for the polymer bearing approximately 35 mol% of 3HV. Polyhydroxyalkanoates production by this organism was not dependent on nutritional limitation, but remarkably influenced by dissolved oxygen concentration in the culture medium. Low level of dissolved oxygen concentration prevented spore formation in the cells and stimulated the synthesis of polyhydroxyalkanoate. The composition of poly (3HB-co-3HV) produced by B. thuringiensis R-510 lyhydroxyalkanoate. The composition of poly(3HB-co-3HV) propduced by B. thuringiensis R-510 varied according to the growth time. However, there was no evidence that polymers isolated from cells were mixtures of immiscible polymers.

  • PDF

Mcl-PHAs Produced by Pseudomonas sp. Gl01 Using Fed-Batch Cultivation with Waste Rapeseed Oil as Carbon Source

  • Mozejko, Justyna;Wilke, Andreas;Przybylek, Grzegorz;Ciesielski, Slawomir
    • Journal of Microbiology and Biotechnology
    • /
    • 제22권3호
    • /
    • pp.371-377
    • /
    • 2012
  • The present study describes medium-chain-length polyhydroxyalkanoates (mcl-PHAs) production by the Pseudomonas Gl01 strain isolated from mixed microbial communities utilized for PHAs synthesis. A two-step fed-batch fermentation was conducted with glucose and waste rapeseed oil as the main carbon source for obtaining cell growth and mcl-PHAs accumulation, respectively. The results show that the Pseudomonas Gl01 strain is capable of growing and accumulating mcl-PHAs using a waste oily carbon source. The biomass value reached 3.0 g/l of CDW with 20% of PHAs content within 48 h of cultivation. The polymer was purified from lyophilized cells and analyzed by gas chromatography (GC). The results revealed that the monomeric composition of the obtained polyesters depended on the available substrate. When glucose was used in the growth phase, 3-hydroxyundecanoate and 3-hydroxydodecanoate were found in the polymer composition, whereas in the PHAs-accumulating stage, the Pseudomonas Gl01 strain synthesized mcl-PHAs consisting mainly of 3-hydroxyoctanoate and 3-hydroxydecanoate. The transcriptional analysis using reverse-transcription real-time PCR reaction revealed that the phaC1 gene could be transcribed simultaneously to the phaZ gene.

목단피로부터 멜라닌 생성 억제성분의 분리 (Isolation of Inhibitory Components on Tyrosinase Activity from the Bark of Paeonia moutan)

  • 이승호;박지수;김소영;김진준;정시련
    • 약학회지
    • /
    • 제42권4호
    • /
    • pp.353-358
    • /
    • 1998
  • The MeOH extract of the bark of Paeonia moutan showed potent inhibitory effect on the mushroom tyrosinase activity in vitro. The activity-guided fractionation of t he MeOH extract resulted in the isolation of three active compounds. The chemical structures of these compounds were elucidated by chemical and spectroscopic evidence as catechin, 1,2,3,6-tetra-O-galloyl-${\beta}$-D-glucose and 1,2,3,4,6-penta-0-galloyl-${\beta}$-D-glucose, respectively. Among them, the inhibitory activity by 1,2,3,6-tetra-galloyl-${\beta}$-D-glucose on mushroom tyrosinase was more potent $(IC_{50}=3.5\;{\mu}M)$ than that of kojic acid $(IC_{50}=8.7\;{\mu}M)$ ,but catechin enhanced the mushroom tyrosinase activity 50% in the concentration of 34.5M.

  • PDF

Amperometric Glucose Biosensor Based on Sol-Gel-Derived Zirconia/Nafion Composite Film as Encapsulation Matrix

  • Kim, Hyun-Jung;Yoon, Sook-Hyun;Choi, Han-Nim;Lyu, Young-Ku;Lee, Won-Yong
    • Bulletin of the Korean Chemical Society
    • /
    • 제27권1호
    • /
    • pp.65-70
    • /
    • 2006
  • An amperometric glucose biosensor has been developed based on the use of the nanoporous composite film of sol-gel-derived zirconia and perfluorosulfonated ionomer, Nafion, for the encapsulation of glucose oxidase (GOx) on a platinized glassy carbon electrode. Zirconium isopropoxide (ZrOPr) was used as a sol-gel precursor for the preparation of zirconia/Nafion composite film and the performance of the resulting glucose biosensor was tuned by controlling the water content in the acid-catalyzed hydrolysis of sol-gel stock solution. The presence of Nafion polymer in the sol-gel-derived zirconia in the biosensor resulted in faster response time and higher sensitivity compared to those obtained at the pure zirconia- and pure Nafion-based biosensors. Because of the nanoporous nature of the composite film, the glucose biosensor based on the zirconia/Nafion composite film can reach 95% of steady-state current less than 5 s. In addition, the biosensor responds to glucose linearly in the range of 0.03-15.08 mM with a sensitivity of 3.40 $\mu$A/mM and the detection limit of 0.037 mM (S/N = 3). Moreover, the biosensor exhibited good sensor-to-sensor reproducibility (~5%) and long-term stability (90% of its original activity retained after 4 weeks) when stored in 50 mM phosphate buffer at pH 7 at 4 ${^{\circ}C}$.

ITO 전극 위에 고정된 니켈 나노 입자를 이용한 무효소 혈당센서에 관한 전기화학적인 연구 (The Electrochemical Studies of Non-enzymatic Glucose Sensor on the Nickel Nanoparticle-deposited ITO Electrode)

  • 오인돈;김사만다;최영봉
    • 전기화학회지
    • /
    • 제17권3호
    • /
    • pp.164-171
    • /
    • 2014
  • 무효소 혈당센서는 높은 선택성과 민감성을 가지고 저비용으로 체내 혈당(glucose)을 검출할 수차세대 기술이다. 현재 시판되고 있는 혈당센서는 당을 산화시켜주는 당산화효소와 전극과 효소사이에 전자 전달을 원활하게 해주는 산화/환원 매개체를 이용하여 효소센서로 제작된다. 그러나 이러한 효소센서는 pH, 온도, 습도, 화학적 독성물질 등에 영향을 많이 받아 안정성이 떨어지고, 제작에 비용이 많이 드는 단점을 가지고 있다. 본 논문은 위와 같은 단점을 해결하고자 환원제인 당에 의하여 환원되는 니켈 나노입자를 전기화학적 흡착방법을 이용하여 산화 인듐 주석 전극 (ITO)에 고정시켰다. 고정된 니켈 나노입자는 전극의 표면적을 넓혀 신호를 증폭시키는 효과를 가지고 있으며, 당에 의하여 계속적으로 니켈이 환원됨에 따라 전극 반응에서는 촉매산화전류 반응으로 나타낸다. 당의 농도에 따라서 선형적으로 감응 할 수 있는 최적 조건의 니켈 나노입자를 이용하여 혈당센서를 제작하였다. 또한 체내에 존재하는 방해 인자인 아스코브산의 간섭을 억제하기 위해 음이온 고분자의 표면처리를 통하여 상대적으로 당에 선택적으로 감응하도록 하였다. 제작된 전극을 통하여 당 농도 별 산화 촉매 전류를 순환 전압 전류 법으로 측정한 결과 650 mV (vs. Ag/AgCl)에서 최대 전기적 신호가 발생되었으며, 포도당 0~6.15 mM 의 농도범위에서 전기적 신호가 선형 증가함을 확인할 수 있었다.

Chitinase Produced by Streptomyces sp.

  • 홍용기;서정훈
    • 한국미생물생명공학회:학술대회논문집
    • /
    • 한국미생물생명공학회 1978년도 추계학술대회
    • /
    • pp.208.4-209
    • /
    • 1978
  • The Chitinase which hydrolyzes the chitin, $\beta-1,$ 4-polymer of N-acetyl glucosamine, was purified from the culture broth of Streptomyces sp. 115-5 strain. The homogeneity of enzyme was reveali by CM-Sephadex C-50 column chromatography and polyacrylamide gel electrophoresis. The purified enzyme hydrolyzed chitin and chitosan, but not cellulose. And with chitin as the substrate, a Km value of 3.6mg per ml and a Vmax of $100\mu$ mole per hr were found. The activation energy for the reaction was 3.66 Kcal per mole. The M. W. was estimated 56,000 daltons, and PI as 3.0. The chitinase was inhibited by the addition of glucose, glucuronic acid, sorbitol and xylose as product inhibitors and its inhibition pattern by glucose was estimated pure competitive type.

  • PDF

이식형 혈당 센서의 생리활성 물질에 의한 방해 효과를 제거하기 위한 새로운 효소고정법 개발 (Development of Enzyme Immobilization Method to Remove Interference by Physiological Chemicals for Implantable Glucose Sensors)

  • 정택동;김희찬
    • 대한의용생체공학회:학술대회논문집
    • /
    • 대한의용생체공학회 1998년도 추계학술대회
    • /
    • pp.72-73
    • /
    • 1998
  • A new method for enzyme immobilization has been developed to remove interference by potential interferents in body fluids. Instead of using electron mediators, we chose direct hydrogen peroxide measurement route. Extremely hydrogen peroxide-selective polymer was coated as an inner membrane to exclude interferents and then glucose oxidase(GOx) was entrapped by electropolymerization of inert monomers. There was no solvent casting step throughout the whole fabrication procedure but all membranes on Pt-Ir electrode were formed by electropolymerization. Thus, membrane thickness, quantity of enzyme loaded and can be controlled by electrochemical parameters. As a result, reproducibility of biosensor characteristics becomes remarkably improved in terms of mass production.

  • PDF

산사(Crataegus pinnatifida BUNGE)가 지질대사 증후군의 지질성분 및 혈당 완화에 미치는 영향 (Effects of Haw (Crataegus pinnatifida BUNGE) on Relaxation in the Lipid Components and Blood Glucose of Lipid Metabolism Syndrome)

  • 김한수;김민아;;장성호;이원기;류재용
    • 한국환경과학회지
    • /
    • 제23권6호
    • /
    • pp.1021-1027
    • /
    • 2014
  • This study was designed in order to determine the influences of haw (Crataegus pinnatifida $B_{UNGE}$) on the lipid metabolism syndrome. Sprague Dawley rats, 7 weeks old, were given four different types of diets for 5 weeks: ND group (noncholesterolemic diet), HE group (non cholesterolemic diet+haw extract), CD group (cholesterolemic diet), CH group (cholesterolemic diet+haw extract). Concentrations of LDL-cholesterol, triglyceride, phospholipid, free cholesterol, cholesteryl ester, blood glucose were remarkably higher in the CD group than the other groups. But by treatment of haw extract group with cholesterolemic diet (CH group) were significantly decreased compared with CD group. Cholesteryl ester ratio was no difference between CD group and CH group. These results indicate that Crataegus pinnatifida $B_{UNGE}$ would be effective in lipid metabolism syndrome.

Optimum Conditions for the Biological Production of Lactic Acid by a Newly Isolated Lactic Acid Bacterium, Lactobacillus sp. RKY2

  • Wee Young-Jung;Kim Jin-Nam;Yun Jong-Sun;Ryu Hwa-Won
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제10권1호
    • /
    • pp.23-28
    • /
    • 2005
  • Lactic acid is a green chemical that can be used as a raw material for biodegradable polymer. To produce lactic acid through microbial fermentation, we previously screened a novel lactic acid bacterium. In this work, we optimized lactic acid fermentation using a newly isolated and homofermentative lactic acid bacterium. The optimum medium components were found to be glucose, yeast extract, $(NH_4)_{2}HPO_4,\;and\;MnSO_4$. The optimum pH and temperature for a batch culture of Lactobacillus sp. RKY2 was found to be 6.0 and $36^{\circ}C$, respectively. Under the optimized culture conditions, the maximum lactic acid concentration (153.9 g/L) was obtained from 200 g/L of glucose and 15 g/L of yeast extract, and maximum lactic acid productivity ($6.21\;gL^{-1}h^{-1}$) was obtained from 100 g/L of glucose and 20 g/L of yeast extract. In all cases, the lactic acid yields were found to be above 0.91 g/g. This article provides the optimized conditions for a batch culture of Lactobacillus sp. RKY2, which resulted in highest productivity of lactic acid.