Optimum Conditions for the Biological Production of Lactic Acid by a Newly Isolated Lactic Acid Bacterium, Lactobacillus sp. RKY2

  • Wee Young-Jung (School of Biological Sciences and Technology, Chonnam National University) ;
  • Kim Jin-Nam (Department of Material Chemical and Biochemical Engineering, Chonnam National University) ;
  • Yun Jong-Sun (BioHelix, Biotechnology Industrialization Center) ;
  • Ryu Hwa-Won (School of Biological Sciences and Technology, Chonnam National University)
  • Published : 2005.02.01

Abstract

Lactic acid is a green chemical that can be used as a raw material for biodegradable polymer. To produce lactic acid through microbial fermentation, we previously screened a novel lactic acid bacterium. In this work, we optimized lactic acid fermentation using a newly isolated and homofermentative lactic acid bacterium. The optimum medium components were found to be glucose, yeast extract, $(NH_4)_{2}HPO_4,\;and\;MnSO_4$. The optimum pH and temperature for a batch culture of Lactobacillus sp. RKY2 was found to be 6.0 and $36^{\circ}C$, respectively. Under the optimized culture conditions, the maximum lactic acid concentration (153.9 g/L) was obtained from 200 g/L of glucose and 15 g/L of yeast extract, and maximum lactic acid productivity ($6.21\;gL^{-1}h^{-1}$) was obtained from 100 g/L of glucose and 20 g/L of yeast extract. In all cases, the lactic acid yields were found to be above 0.91 g/g. This article provides the optimized conditions for a batch culture of Lactobacillus sp. RKY2, which resulted in highest productivity of lactic acid.

Keywords

References

  1. Davison, B. E., R. L. Llanos, M. R. Cancilla, N. C. Redman, and A. J. Hillier (1995) Current research on the genetics of lactic acid production in lactic acid bacteria. Int. Dairy J. 5: 763-784 https://doi.org/10.1016/0958-6946(95)00031-3
  2. Datta, R., S. P. Tsai, P. Bonsignore, S. H. Moon, and J. R. Frank (1995) Technological and economic potential of poly(lactic acid) and lactic acid derivatives. FEMS Microbiol. Rev. 16: 221-231 https://doi.org/10.1111/j.1574-6976.1995.tb00168.x
  3. Richter, K. and C. Berthold (1998) Biotechnological conversion of sugar and starch crops into lactic acid. J. Agric. Eng. Res. 71: 181-191 https://doi.org/10.1006/jaer.1998.0314
  4. Yang, Y. J., S. H. Hwang, S. M. Lee, Y. J. Kim, and Y. M. Koo (2002) Continuous cultivation of Lactobacillus rhamnosus with cell recycleing using an acoustic cell settler. Biotechnol. Bioprocess Eng. 7: 357-361 https://doi.org/10.1007/BF02933521
  5. Varadarajan, S. and D. J. Miller (1999) Catalytic upgrading of fermentation-derived organic acids. Biotechnol. Prog. 15: 845-854 https://doi.org/10.1021/bp9900965
  6. Amass, W., A. Amass, and B. Tighe (1998) A review of biodegradable polymers: Uses, current developments in the synthesis and characterization of biodegradable polymers, blends of biodegradable polymers and recent advances in biodegradation studies. Polym. Int. 47: 89-114 https://doi.org/10.1002/(SICI)1097-0126(1998100)47:2<89::AID-PI86>3.0.CO;2-F
  7. Vink, E. T. H., K. R. Rabago, D. A. Glassner, and P. R. Gruber (2003) Applications of life cycle assessment to NatureWorksTM polylactides (PLA) production. Polym. Degrad. Stabil. 80: 403-419 https://doi.org/10.1016/S0141-3910(02)00372-5
  8. Litchfield, J. H. (1996) Microbiological production of lactic acid. Adv. Appl. Microbiol. 42: 45-95 https://doi.org/10.1016/S0065-2164(08)70372-1
  9. Bai, D. M., X. M. Zhao, X. G. Li, and S. M. Xu (2004) Strain improvement of Rhizopus oryzae for over-production of L(+)-lactic acid and metabolic flux analysis of mutants. Biochem. Eng. J. 18: 41-48 https://doi.org/10.1016/S1369-703X(03)00126-8
  10. Miura, S., L. Dwiarti, T. Arimura, M. Hoshino, L. Tiejun, and M. Okabe (2004) Enhanced production of L-lactic acid by ammonia-tolerant mutant strain Rhizopus sp. MK- 96-1196. J. Biosci. Bioeng. 97: 19-23 https://doi.org/10.1016/S1389-1723(04)70159-0
  11. Yun, J. S., Y. J. Wee, and H. W. Ryu (2003) Production of optically pure L(+)-lactic acid from various carbohydrates by batch fermentation of Enterococcus faecalis RKY1. Enzyme Microb. Technol. 33: 416-423 https://doi.org/10.1016/S0141-0229(03)00139-X
  12. Hofvendahl, K. and B. Hahn-Hagerdal (2000) Factors affecting the fermentative lactic acid production from renewable resources. Enzyme Microb. Technol. 26: 87-107 https://doi.org/10.1016/S0141-0229(99)00155-6
  13. Stiles, M. E. and W. H. Holzapfel (1997) Lactic acid bacteria of foods and their current taxonomy. Int. J. Food Microbiol. 36: 1-29 https://doi.org/10.1016/S0168-1605(96)01233-0
  14. Berry, A. R., C. M. M. Franco, W. Zhang, and A. P. J. Middelberg (1999) Growth and lactic acid production in batch culture of Lactobacillus rhamnosus in a defined medium. Biotechnol. Lett. 21: 163-167 https://doi.org/10.1023/A:1005483609065
  15. Butos, G., A. B. Moldes, J. L. Alonso, and M. Vázquez (2004) Optimization of D-lactic acid production by Lactobacillus coryniformis using response surface methodology. Food Microbiol. 21: 143-148 https://doi.org/10.1016/S0740-0020(03)00061-3
  16. Hofvendahl, K., E. W. J. van Niel, and B. Hahn-Hägerdal (1999) Effect of temperature and pH on growth and product formation of Lactobacillus lactis ssp. lactis ATCC 19435 growing on maltose. Appl. Microbiol. Biotechnol. 51: 669-672 https://doi.org/10.1007/s002530051449
  17. Wee, Y. J., J. S. Yun, D. H. Park, and H. W. Ryu (2004) Isolation and characterization of a novel lactic acid bacterium for the production of lactic acid. Biotechnol. Bioprocess Eng. 9: 303-308 https://doi.org/10.1007/BF02942348
  18. Lee, J. H., M. H. Choi, J. Y. Park, H. K. Kang, H. W. Ryu, C. S. Sunwo, Y. J. Wee, K. D. Park, D. W. Kim, and D. Kim (2004) Cloning and characterization of the lactate dehydrogenase genes from Lactobacillus sp. RKY2. Biotechnol. Bioprocess Eng. 9: 318-322 https://doi.org/10.1007/BF02942351
  19. deMan, J. C., M. Rogosa, and M. E. Sharpe (1960) A medium for the cultivation of lactobacilli. J. Appl. Bacteriol. 23: 130-135 https://doi.org/10.1111/j.1365-2672.1960.tb00188.x
  20. Stainer, R. Y., J. L. Ingraham, M. L. Wheelis, and P. R. Painter (1986) The Microbial World. 5th ed., pp. 495-504. Prentice Hall, NY, USA
  21. Angelis, M. D. and M. Gobbetti (1999) Lactobacillus sanfranciscensis CB1: Manganese, oxygen, superoxide dismutase and metabolism. Appl. Microbiol. Biotechnol. 51: 358- 363 https://doi.org/10.1007/s002530051402
  22. Bruno-Barcena, J. M., A. L. Ragout, P. R. Cordoba, and F. Sineriz (1999) Continuous production of L(+)-lactic acid by Lactobacillus casei in two-stage systems. Appl. Microbiol. Biotechnol. 51: 316-324 https://doi.org/10.1007/s002530051397
  23. Akerberg, C., K. Hofvendahl, G. Zacchi, and B. Hahn- Hagerdal (1998) Modeling the influence of pH, temperature, glucose and lactic acid concentrations on the kinetics of lactic acid production by Lactococcus lactis ssp. lactis ATCC 19435 in whole-wheat flour. Appl. Microbiol. Biotechnol. 49: 682-690 https://doi.org/10.1007/s002530051232
  24. Ohara, H., K. Hiyama, and T. Yoshida (1992) Noncompetitive product inhibition in lactic acid fermentation from glucose. Appl. Microbiol. Biotechnol. 36: 773-776 https://doi.org/10.1007/BF00172192
  25. Hujanen, M., S. Linko, Y. Y. Linko, and M. Leisola (2001) Optimization of media and cultivation conditions for L(+)(S)-lactic acid production by Lactobacillus casei NRRL B-441. Appl. Microbiol. Biotechnol. 56: 126-130 https://doi.org/10.1007/s002530000501
  26. Hujanen, M. and Y. Y. Linko (1999) Effect of temperature and various nitrogen sources on L(+)-lactic acid production by Lactobacillus casei. Appl. Microbiol. Biotechnol. 45: 307-313 https://doi.org/10.1007/s002530050688