Browse > Article

Optimum Conditions for the Biological Production of Lactic Acid by a Newly Isolated Lactic Acid Bacterium, Lactobacillus sp. RKY2  

Wee Young-Jung (School of Biological Sciences and Technology, Chonnam National University)
Kim Jin-Nam (Department of Material Chemical and Biochemical Engineering, Chonnam National University)
Yun Jong-Sun (BioHelix, Biotechnology Industrialization Center)
Ryu Hwa-Won (School of Biological Sciences and Technology, Chonnam National University)
Publication Information
Biotechnology and Bioprocess Engineering:BBE / v.10, no.1, 2005 , pp. 23-28 More about this Journal
Abstract
Lactic acid is a green chemical that can be used as a raw material for biodegradable polymer. To produce lactic acid through microbial fermentation, we previously screened a novel lactic acid bacterium. In this work, we optimized lactic acid fermentation using a newly isolated and homofermentative lactic acid bacterium. The optimum medium components were found to be glucose, yeast extract, $(NH_4)_{2}HPO_4,\;and\;MnSO_4$. The optimum pH and temperature for a batch culture of Lactobacillus sp. RKY2 was found to be 6.0 and $36^{\circ}C$, respectively. Under the optimized culture conditions, the maximum lactic acid concentration (153.9 g/L) was obtained from 200 g/L of glucose and 15 g/L of yeast extract, and maximum lactic acid productivity ($6.21\;gL^{-1}h^{-1}$) was obtained from 100 g/L of glucose and 20 g/L of yeast extract. In all cases, the lactic acid yields were found to be above 0.91 g/g. This article provides the optimized conditions for a batch culture of Lactobacillus sp. RKY2, which resulted in highest productivity of lactic acid.
Keywords
batch fermentation; culture conditions; homofermentation; lactic acid; Lactobacillus;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By Web Of Science : 10  (Related Records In Web of Science)
Times Cited By SCOPUS : 8
연도 인용수 순위
1 Berry, A. R., C. M. M. Franco, W. Zhang, and A. P. J. Middelberg (1999) Growth and lactic acid production in batch culture of Lactobacillus rhamnosus in a defined medium. Biotechnol. Lett. 21: 163-167   DOI   ScienceOn
2 Butos, G., A. B. Moldes, J. L. Alonso, and M. Vázquez (2004) Optimization of D-lactic acid production by Lactobacillus coryniformis using response surface methodology. Food Microbiol. 21: 143-148   DOI   ScienceOn
3 Ohara, H., K. Hiyama, and T. Yoshida (1992) Noncompetitive product inhibition in lactic acid fermentation from glucose. Appl. Microbiol. Biotechnol. 36: 773-776   DOI
4 Davison, B. E., R. L. Llanos, M. R. Cancilla, N. C. Redman, and A. J. Hillier (1995) Current research on the genetics of lactic acid production in lactic acid bacteria. Int. Dairy J. 5: 763-784   DOI   ScienceOn
5 Varadarajan, S. and D. J. Miller (1999) Catalytic upgrading of fermentation-derived organic acids. Biotechnol. Prog. 15: 845-854   DOI   ScienceOn
6 Bai, D. M., X. M. Zhao, X. G. Li, and S. M. Xu (2004) Strain improvement of Rhizopus oryzae for over-production of L(+)-lactic acid and metabolic flux analysis of mutants. Biochem. Eng. J. 18: 41-48   DOI   ScienceOn
7 Bruno-Barcena, J. M., A. L. Ragout, P. R. Cordoba, and F. Sineriz (1999) Continuous production of L(+)-lactic acid by Lactobacillus casei in two-stage systems. Appl. Microbiol. Biotechnol. 51: 316-324   DOI   ScienceOn
8 Hofvendahl, K. and B. Hahn-Hagerdal (2000) Factors affecting the fermentative lactic acid production from renewable resources. Enzyme Microb. Technol. 26: 87-107   DOI   ScienceOn
9 Amass, W., A. Amass, and B. Tighe (1998) A review of biodegradable polymers: Uses, current developments in the synthesis and characterization of biodegradable polymers, blends of biodegradable polymers and recent advances in biodegradation studies. Polym. Int. 47: 89-114   DOI   ScienceOn
10 Angelis, M. D. and M. Gobbetti (1999) Lactobacillus sanfranciscensis CB1: Manganese, oxygen, superoxide dismutase and metabolism. Appl. Microbiol. Biotechnol. 51: 358- 363   DOI   ScienceOn
11 deMan, J. C., M. Rogosa, and M. E. Sharpe (1960) A medium for the cultivation of lactobacilli. J. Appl. Bacteriol. 23: 130-135   DOI
12 Stiles, M. E. and W. H. Holzapfel (1997) Lactic acid bacteria of foods and their current taxonomy. Int. J. Food Microbiol. 36: 1-29   DOI   ScienceOn
13 Richter, K. and C. Berthold (1998) Biotechnological conversion of sugar and starch crops into lactic acid. J. Agric. Eng. Res. 71: 181-191   DOI   ScienceOn
14 Akerberg, C., K. Hofvendahl, G. Zacchi, and B. Hahn- Hagerdal (1998) Modeling the influence of pH, temperature, glucose and lactic acid concentrations on the kinetics of lactic acid production by Lactococcus lactis ssp. lactis ATCC 19435 in whole-wheat flour. Appl. Microbiol. Biotechnol. 49: 682-690   DOI   ScienceOn
15 Hujanen, M. and Y. Y. Linko (1999) Effect of temperature and various nitrogen sources on L(+)-lactic acid production by Lactobacillus casei. Appl. Microbiol. Biotechnol. 45: 307-313   DOI   ScienceOn
16 Miura, S., L. Dwiarti, T. Arimura, M. Hoshino, L. Tiejun, and M. Okabe (2004) Enhanced production of L-lactic acid by ammonia-tolerant mutant strain Rhizopus sp. MK- 96-1196. J. Biosci. Bioeng. 97: 19-23   DOI
17 Stainer, R. Y., J. L. Ingraham, M. L. Wheelis, and P. R. Painter (1986) The Microbial World. 5th ed., pp. 495-504. Prentice Hall, NY, USA
18 Datta, R., S. P. Tsai, P. Bonsignore, S. H. Moon, and J. R. Frank (1995) Technological and economic potential of poly(lactic acid) and lactic acid derivatives. FEMS Microbiol. Rev. 16: 221-231   DOI   ScienceOn
19 Hofvendahl, K., E. W. J. van Niel, and B. Hahn-Hägerdal (1999) Effect of temperature and pH on growth and product formation of Lactobacillus lactis ssp. lactis ATCC 19435 growing on maltose. Appl. Microbiol. Biotechnol. 51: 669-672   DOI   ScienceOn
20 Lee, J. H., M. H. Choi, J. Y. Park, H. K. Kang, H. W. Ryu, C. S. Sunwo, Y. J. Wee, K. D. Park, D. W. Kim, and D. Kim (2004) Cloning and characterization of the lactate dehydrogenase genes from Lactobacillus sp. RKY2. Biotechnol. Bioprocess Eng. 9: 318-322   DOI   ScienceOn
21 Litchfield, J. H. (1996) Microbiological production of lactic acid. Adv. Appl. Microbiol. 42: 45-95   DOI
22 Hujanen, M., S. Linko, Y. Y. Linko, and M. Leisola (2001) Optimization of media and cultivation conditions for L(+)(S)-lactic acid production by Lactobacillus casei NRRL B-441. Appl. Microbiol. Biotechnol. 56: 126-130   DOI   ScienceOn
23 Yun, J. S., Y. J. Wee, and H. W. Ryu (2003) Production of optically pure L(+)-lactic acid from various carbohydrates by batch fermentation of Enterococcus faecalis RKY1. Enzyme Microb. Technol. 33: 416-423   DOI   ScienceOn
24 Yang, Y. J., S. H. Hwang, S. M. Lee, Y. J. Kim, and Y. M. Koo (2002) Continuous cultivation of Lactobacillus rhamnosus with cell recycleing using an acoustic cell settler. Biotechnol. Bioprocess Eng. 7: 357-361   DOI   ScienceOn
25 Vink, E. T. H., K. R. Rabago, D. A. Glassner, and P. R. Gruber (2003) Applications of life cycle assessment to NatureWorksTM polylactides (PLA) production. Polym. Degrad. Stabil. 80: 403-419   DOI   ScienceOn
26 Wee, Y. J., J. S. Yun, D. H. Park, and H. W. Ryu (2004) Isolation and characterization of a novel lactic acid bacterium for the production of lactic acid. Biotechnol. Bioprocess Eng. 9: 303-308   DOI   ScienceOn