Browse > Article
http://dx.doi.org/10.5229/JKES.2014.17.3.164

The Electrochemical Studies of Non-enzymatic Glucose Sensor on the Nickel Nanoparticle-deposited ITO Electrode  

Oh, In-Don (Department of chemistry, College of Advanced Science, Dankook University)
Kim, Samantha (Gyeonggi Suwon International School)
Choi, Young-Bong (Department of chemistry, College of Advanced Science, Dankook University)
Publication Information
Journal of the Korean Electrochemical Society / v.17, no.3, 2014 , pp. 164-171 More about this Journal
Abstract
A highly sensitive and selective non-enzymatic glucose sensor has gained great attention because of simple signal transformation, low-cost, easily handling, and confirming the blood glucose as the representative technology. Until now, glucose sensor has been developed by the immobilization of glucose oxidase (GOx) on the surface of electrodes. However although GOx is quite stable compared with other enzymes, the enzyme-based biosensors are still impacted by various environment factors such as temperature, pH value, humidity, and toxic chemicals. Non-enzymatic sensor for direct detecting glucose is an attractive alternative device to overcome the above drawbacks of enzymatic sensor. Many efforts have been tried for the development of non-enzymatic sensors using various transition metals (Pt, Au, Cu, Ni, etc.), metal alloys (Pt-Pb, Pt-Au, Ni-Pd, etc.), metal oxides, carbon nanotubes and graphene. In this paper, we show that Ni-based nano-particles (NiNPs) exhibit remarkably catalyzing capability for glucose originating from the redox couple of $Ni(OH)_2/NiOOH$ on the surface of ITO electrode in alkaline medium. But, these non-enzymatic sensors are nonselective toward oxidizable species such as ascorbic acid the physiological fluid. So, the anionic polymer was coated on NiNPs electrode preventing the interferences. The oxidation of glucose was highly catalyzed by NiNPs. The catalytically anodic currents were linearly increased in proportion to the glucose concentration over the 0~6.15 mM range at 650 mV versus Ag/AgCl.
Keywords
Non-enzymatic sensor; Nickel nanoparticles; glucose;
Citations & Related Records
연도 인용수 순위
  • Reference
1 L. C. Clark Jr. and C. Lyons, 'Electrode systems for continuous monitoring in cardiovascular surgery' Ann. N.Y. Acad. Sci., 102, 29 (1962).
2 J. Wang, 'Glucose biosensors: 40 years of advances and challenges' Electroanalysis., Interfacial Electrochem., 13, 983 (2001).
3 X. J. Zhang, G. F. Wang, X. W. Liu, J. J. Wu, M. Li, J. Gu, H. Liu, and B. Fang, 'Different CuO nanostructures: synthesis, characterization, and applications for glucose sensors' J. Phys.Chem. C., 112, 16845 (2008).   DOI   ScienceOn
4 Y. Ding, Y. Wang, L. Su, M. Bellagamba, H. Zhang, and Y. Lei, 'Electrospun $Co_3O_4$ nanofibers for sensitive and selective glucose detection' Biosens. Bioelectron., 26, 542 (2010).   DOI   ScienceOn
5 P. P. Joshi, S. A. Merchant, Y. Wang, and D. W. Schmidtke, 'Amperometric biosensors based on redox polymer-carbon nanotube-enzyme composites' Anal. Chem., 77, 3183 (2005).   DOI   ScienceOn
6 Y. Liu, D. Yu, C. Zeng, Z. Miao, and L. Dai, 'Biocompatible graphene oxide-basedglucose biosensors' Langmuir., 26, 6158 (2010).   DOI   ScienceOn
7 Y. Mu D. L. Jia, Y. Y. He, Y. Q. Miao, and H. L. Wu, 'Nano nickel oxidemodified non-enzymatic glucose sensors with enhanced sensitivity through an electro-chemical process strategy at high potential' Biosens. Bioelectron., 26, 2948 (2011).   DOI   ScienceOn
8 M. Shamsipur, M. Najafi, and M. R. Milani Hosseini, 'Highly improved electrooxidation of glucose at a nickel(II) oxide/multiwalled carbon nanotube modified glassy carbon electrode' Bioelectrochemistry., 77, 120 (2010).   DOI   ScienceOn
9 N. Qiao and J. Zheng, 'Nonenzymatic glucose sensor based on glassy carbon elec-trode modified with a nanocomposite composed of nickel hydroxide andgrapheme' Microchim. Acta., 177, 103 (2012).   DOI
10 A. Safavi, N. Maleki, and E. Farjami, 'Fabrication of a glucose sensor based on a novel nanocomposite electrode' Biosens. Bioelectron., 24, 1655 (2009).   DOI   ScienceOn
11 E. Scavetta, S. Stipa, and D. Tonelli, 'Electrodeposition of a nickel-based hydrotalciteon Pt nanoparticles for ethanol and glucose sensing' Electrochem. Commun., 9, 2838 (2007).   DOI   ScienceOn
12 J. Wang, J. Liu, L. Chen, and F. Lu, 'Highly selective membrane-free, mediator-free glucose biosensor' Anal. Chem., 66, 3600 (1994).   DOI   ScienceOn
13 H. Nie, Z. Yao, X. Zhou, Z. Yang, and S. Huang, 'Nonenzymatic electrochemicaldetection of glucose using well-distributed nickel nanoparticles on straightmulti-walled carbon nanotubes' Biosens. Bioelectron., 30, 28 (2011).   DOI
14 K. Wang, J. J. Xu, and H. Y. Chen, 'A novel glucose biosensor based on the nanoscaledcobalt phthalocyanine-glucose oxidase biocomposite' Biosens. Bioelectron., 20, 1388 (2005).   DOI   ScienceOn
15 T. Kohma, D. Oyamatsu, S. Kuwabata, 'Preparation of selective micro glucose sensor without permselective membrane by electrochemical deposition of ruthenium and glucose oxidase' Electrochem. Commun., 9, 1012 (2007).   DOI   ScienceOn
16 A. P. F. Turner, 'Diabetes mellitus: biosensors for research and management' World Biotech. Rep., 1, 181 (1985).
17 M. A. Lange and J. Q. Chambers, 'Amperometric determination of glucose with a ferrocene-mediated glucose oxidase/polyacrylamide gel electrode' Anal. Chim. Acta., 175, 89 (1985).   DOI   ScienceOn
18 B. A. Gregg and A. Heller, 'Redox polymer films containing enzymes. 2. Glucose oxidase containing enzyme electrodes' J. Phys. Chem., 95, 5976 (1991)   DOI
19 S. Park, T. D. Chung, H. C. Kim, 'Nonenzymatic glucose detection using mesoporous platinum' Anal. Chem., 75, 3046 (2003).   DOI   ScienceOn
20 B. K. Jena, C. R. Raj, 'Enzyme-free amperometric sensing of glucose by using gold nanoparticles' Chem. Eur. J., 12, 2702 (2006).   DOI   ScienceOn
21 H. Y. Bai, M. Han, Y. Z. Du, J. C. Bao, and Z. H. Dai, 'Facile synthesis of porous tubular palladium nanostructures and their application in a nonenzymatic glucose sensor' Chem. Commun., 46, 1739 (2010).   DOI   ScienceOn
22 L. M. Lu, L. Zhang, F. L. Qu, H. X. Lu, X. B. Zhang, Z. S. Wu, S. Y. Huan, Q. A. Wang, G. L. Shen, and R. Q. Yu, 'A nano-Ni based ultrasensitive nonenzymatic electrochemical sensor for glucose: Enhancing sensitivity through a nanowire array strategy' Biosens. Bioelectron., 25, 218 (2009).   DOI   ScienceOn
23 J. P. Wang, D. F. Thomas, and A. C. Chen, 'Nonenzymatic electrochemical glucose sensor based on nanoporous PtPb networks' Anal. Chem., 80, 997 (2008).   DOI   ScienceOn
24 B. P. Giordano, W. Thrash, L. Hollenbaugh, W. P. Dube, C. Hodges, A. Swain, C. R. Banion, and G. J. Klingensmith, 'Performance of seven blood glucose testing systems at high altitude' Diabetes Educ., 15, 444 (1989).   DOI
25 P. H. Hindle, S. Nigro, M. Asmussen, and A. C. Chen, 'Amperometric glucose sensor based on platinum-iridium nanomaterials' Electrochem. Commun., 10, 1438 (2008).   DOI   ScienceOn
26 K. E. Toghill, L. Xiao, M. A. Phillips, and R. G. Compton, 'The non-enzymatic determination of glucose using an electrolytically fabricated nickel microparticle modified boron-doped diamond electrode or nickel foil electrode' Sens. Actuator. B: Chem., 147, 642 (2010).   DOI   ScienceOn