• Title/Summary/Keyword: Global Interpolation

Search Result 107, Processing Time 0.023 seconds

A New Method of the Global Interpolation in NURBS Surface: II (NURBS Surface Global Interpolation에 대한 한 방법: II)

  • 정형배
    • Korean Journal of Computational Design and Engineering
    • /
    • v.3 no.4
    • /
    • pp.243-250
    • /
    • 1998
  • In parametric surface interpolation, the choice of the parameter values to the set of scattered points makes a great deal of difference in the resulting surface. A new method is developed and tested for the parametrization in NURBS surface global interpolation. This method uses the parameter value at the maximal value of relevant rational basis function, to assign the parameter values to the arbitrary set of design data. This method gives us several important advantages in geometric modeling, the freedom of the selection of knot values, the feasible transformation of the data set to the matrix, the possibility of affinite transformation between the design data and generated surface, etc.

  • PDF

An Isometric Shape Interpolation Method on Mesh Models (메쉬 모델에 대한 아이소메트릭 형상 보간 방법)

  • Baek, Seung-Yeob;Lee, Kunwoo
    • Korean Journal of Computational Design and Engineering
    • /
    • v.19 no.2
    • /
    • pp.119-128
    • /
    • 2014
  • Computing the natural-looking interpolation of different shapes is a fundamental problem of computer graphics. It is proved by some researchers that such an interpolation can be achieved by pursuing the isometry. In this paper, a novel coordinate system that is invariant under isometries is defined. The coordinate system can easily be converted from the global vertex coordinates. Furthermore, the global coordinates can be efficiently recovered from the new coordinates by simply solving two sparse least-squares problems. Since the proposed coordinate system is invariant under isometries, then transformations such as global rigid trans-formations, articulated posture deformations, or any other isometric deformations, do not change the coordinate values. Therefore, shape interpolation can be done in this framework without being affected by the distortions caused by the isometry.

A New Method of the Global Interpolation in NURBS Surface (NURBS Surface Global Interpolation에 대한 한 방법)

  • 정형배;나승수;박종환
    • Korean Journal of Computational Design and Engineering
    • /
    • v.2 no.4
    • /
    • pp.237-243
    • /
    • 1997
  • A new method is introduced for the interpolation in NURBS Surface. This method uses the basis functions to assign the parameter values to the arbitrary set of geometric data and uses the iteration method to compute the control net. The advantages of this method are the feasible transformation of the data set to the matrix form and the effective surface generation as a result, especially to the design engineer.

  • PDF

An intelligent fuzzy theory for ocean structure system analysis

  • Chen, Tim;Cheng, C.Y.J.;Nisa, Sharaban Tahura;Olivera, Jonathan
    • Ocean Systems Engineering
    • /
    • v.9 no.2
    • /
    • pp.179-190
    • /
    • 2019
  • This paper deals with the problem of the global stabilization for a class of ocean structure systems. It is well known that, in general, the global asymptotic stability of the ocean structure subsystems does not imply the global asymptotic stability of the composite closed-loop system. The classical fuzzy inference methods cannot work to their full potential in such circumstances because given knowledge does not cover the entire problem domain. However, requirements of fuzzy systems may change over time and therefore, the use of a static rule base may affect the effectiveness of fuzzy rule interpolation due to the absence of the most concurrent (dynamic) rules. Designing a dynamic rule base yet needs additional information. In this paper, we demonstrate this proposed methodology is a flexible and general approach, with no theoretical restriction over the employment of any particular interpolation in performing interpolation nor in the computational mechanisms to implement fitness evaluation and rule promotion.

A STUDY ON CONSTRAINED EGO METHOD FOR NOISY CFD DATA (Noisy 한 CFD 결과에 대한 구속조건을 고려한 EGO 방법 연구)

  • Bae, H.G.;Kwon, J.H.
    • Journal of computational fluids engineering
    • /
    • v.17 no.4
    • /
    • pp.32-40
    • /
    • 2012
  • Efficient Global Optimization (EGO) method is a global optimization technique which can select the next sample point automatically by infill sampling criteria (ISC) and search for the global minimum with less samples than what the conventional global optimization method needs. ISC function consists of the predictor and mean square error (MSE) provided from the kriging model which is a stochastic metamodel. Also the constrained EGO method can minimize the objective function dealing with the constraints under EGO concept. In this study the constrained EGO method applied to the RAE2822 airfoil shape design formulated with the constraint. But the noisy CFD data caused the kriging model to fail to depict the true function. The distorted kriging model would make the EGO deviate from the correct search. This distortion of kriging model can be handled with the interpolation(p=free) kriging model. With the interpolation(p=free) kriging model, however, the search of EGO solution was stalled in the narrow feasible region without the chance to update the objective and constraint functions. Then the accuracy of EGO solution was not good enough. So the three-step search method was proposed to obtain the accurate global minimum as well as prevent from the distortion of kriging model for the noisy constrained CFD problem.

A New Unified Scheme Computing the Quadrature Weights, Integration and Differentiation Matrix for the Spectral Method

  • Kim, Chang-Joo;Park, Joon-Goo;Sung, Sangkyung
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.1188-1200
    • /
    • 2015
  • A unified numerical method for computing the quadrature weights, integration matrix, and differentiation matrix is newly developed in this study. For this purpose, a spline-like interpolation using piecewise continuous polynomials is converted into a global spline interpolation formula, with which the quadrature formulas can be derived from integration and differentiation of the transformed function in an exact manner. To prove the usefulness of the suggested approach, both the Lagrange and tension spline interpolations are represented in exactly the same form as global spline interpolation. The applicability of the proposed method on arbitrary nodes is illustrated using two different sets of nodes. A series of validations using three test functions is conducted to show the flexibility in selecting computational nodes with the present method.

A 8-bit 10-MSample/s Folding & Interpolation ADC using Preamplifier Sharing Method (전치 증폭기 공유 기법을 이용한 8-bit 10-MSample/s Folding & Interpolation ADC)

  • Ahn, Cheol-Min;Kim, Young-Sik
    • Journal of IKEEE
    • /
    • v.17 no.3
    • /
    • pp.275-283
    • /
    • 2013
  • In this paper, a 8bit 10Ms/s CMOS Folding and Interpolation analog-to-digital convertor is proposed. The architecture of the proposed ADC is based on a Folding & Interpolation using FR(Folding Rate)=8, NFB(Number of Folding Block)=4, IR(Interpolation Rate)=8. The proposed ADC adopts a preamplifier sharing method to decrease the number of preamplifier by half comparing to the conventional ones. This chip has been fabricated with a 0.35[um] CMOS technology. The effective chip area is $1.8[mm]{\times}2.11[mm]$ and it consumes 20[mA] at 3.3 power supply with 10[MHz] clock. The INL is -0.57, +0.61 [LSB] and DNL is -0.4, +0.51 [LSB]. The SFDR is 48.9[dB] and SNDR is 47.9[dB](ENOB 7.6b) when the input frequency is 100[kHz] at 10[MHz] conversion rate.

A Localized Multiquadric (MQ) Interpolation Method on the Hyperbolic Plane (하이퍼볼릭 평면에서의 지역적 MQ 보간법)

  • Park, Hwa-Jin
    • The KIPS Transactions:PartA
    • /
    • v.8A no.4
    • /
    • pp.489-498
    • /
    • 2001
  • A new method for local control of arbitrary scattered data interpolation in the hyperbolic plane is developed in this paper. The issue associated with local control is very critical in the interactive in the interactive design field. Especially the suggested method in this paper could be effectively applied to the interactive shape modeling of genus-N objects, which are constructed on the hyperbolic plane. Since the effects of the changed data affects only the limited area around itself, it is more convenient for end-users to design a genus-N object interactively. Therefore, by improving the global interpolation on the hyperbolic plane where the genus-N object is constructed, this research is aiming at the development and implementation of the local interpolation on the hyperbolic plane. It is implemented using the following process. First, for localizing the interpolating functions, the hyperbolic domain is tessellated into arbitrary triangle patches and the group of adjacent triangle patches of each data point is defined as a sub-domain. On each sub-domain, a weight function is defined. Last, by blending of three weight functions on the overlapped triangles, local MQ interpolation is completed. Consequently, it is compared with the global MQ interpolation using several sample data and functions.

  • PDF

Generalized Kriging Model for Interpolation and Regression (보간과 회귀를 위한 일반크리깅 모델)

  • Jung Jae Jun;Lee Tae Hee
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.2 s.233
    • /
    • pp.277-283
    • /
    • 2005
  • Kriging model is widely used as design analysis and computer experiment (DACE) model in the field of engineering design to accomplish computationally feasible design optimization. In general, kriging model has been applied to many engineering applications as an interpolation model because it is usually constructed from deterministic simulation responses. However, when the responses include not only global nonlinearity but also numerical error, it is not suitable to use Kriging model that can distort global behavior. In this research, generalized kriging model that can represent both interpolation and regression is proposed. The performances of generalized kriging model are compared with those of interpolating kriging model for numerical function with error of normal distribution type and trigonometric function type. As an application of the proposed approach, the response of a simple dynamic model with numerical integration error is predicted based on sampling data. It is verified that the generalized kriging model can predict a noisy response without distortion of its global behavior. In addition, the influences of maximum likelihood estimation to prediction performance are discussed for the dynamic model.

Error estimation for 2-D crack analysis by utilizing an enriched natural element method

  • Cho, J.R.
    • Structural Engineering and Mechanics
    • /
    • v.76 no.4
    • /
    • pp.505-512
    • /
    • 2020
  • This paper presents an error estimation technique for 2-D crack analysis by an enriched natural element (more exactly, enriched Petrov-Galerkin NEM). A bare solution was approximated by PG-NEM using Laplace interpolation functions. Meanwhile, an accurate quasi-exact solution was obtained by a combined use of enriched PG-NEM and the global patch recovery. The Laplace interpolation functions are enriched with the near-tip singular fields, and the approximate solution obtained by enriched PG-NEM was enhanced by the global patch recovery. The quantitative error amount is measured in terms of the energy norm, and the accuracy (i.e., the effective index) of the proposed method was evaluated using the errors which obtained by FEM using a very fine mesh. The error distribution was investigated by calculating the local element-wise errors, from which it has been found that the relative high errors occurs in the vicinity of crack tip. The differences between the enriched and non-enriched PG-NEMs have been investigated from the effective index, the error distribution, and the convergence rate. From the comparison, it has been justified that the enriched PG-NEM provides much more accurate error information than the non-enriched PG-NEM.