하이퍼볼릭 평면에서의 지역적 MQ 보간법

A Localized Multiquadric (MQ) Interpolation Method on the Hyperbolic Plane

  • 박화진 (숙명여자대학교 정보과학부 멀티미디어학과)
  • Park, Hwa-Jin (Dept.of Information Science, Sookmyung Women's University)
  • 발행 : 2001.12.01

초록

본 논문에서는 하이퍼볼릭 평면에서 임의의 분산 데이터 보간을 지역적으로 제어하는 새로운 방법을 개발하였다. 지역적 제어와 관련된 주제는 상호대화형식의 디자인분야에서 매우 중요하다. 특히 본 논문에서 제안한 방법은 하이퍼볼릭 평면상에서 형성되는 genus-N 객체 모델을 상호대화형식으로 디자인하는데 유효하게 적용될 수 있다. 특 변화된 데이터가 미치는 영향이 일정한 지역에만 국한되므로 일반 사용자가 genus-N객체를 상호대화형으로 디자인하기가 훨씬 편리하다. 따라서, 본 연구은 genus-N 객체를 형성하는데 사용한 하이퍼볼릭 평면상에서의 전역적 보간법을 발전시켜 하이퍼볼릭 평면에서의 지역적 보간법개발 및 구현을 목적으로 하고 있다. 이는 다음과 같은 주요 과정을 통하여 구현된다. 먼저, 보간 함수를 지역화하기 위하여 하이퍼볼릭 영역을 임의의 삼각형 패치로 세분화하고 각 데이터에 인접한 삼각형 패치들의 모임을 부 영역이라고 정의한다. 각 부 영역에서 가중치 함수가 설정된다. 마지막으로 중첩된 삼각형 영역의 세 개의 가중치를 혼합함으로써 지역적 보간 함수가 완성된다. 그 결과로서, 여러 개의 샘플 데이터 및 함수를 사용하여 전역적MQ 보간법과 비교한다.

A new method for local control of arbitrary scattered data interpolation in the hyperbolic plane is developed in this paper. The issue associated with local control is very critical in the interactive in the interactive design field. Especially the suggested method in this paper could be effectively applied to the interactive shape modeling of genus-N objects, which are constructed on the hyperbolic plane. Since the effects of the changed data affects only the limited area around itself, it is more convenient for end-users to design a genus-N object interactively. Therefore, by improving the global interpolation on the hyperbolic plane where the genus-N object is constructed, this research is aiming at the development and implementation of the local interpolation on the hyperbolic plane. It is implemented using the following process. First, for localizing the interpolating functions, the hyperbolic domain is tessellated into arbitrary triangle patches and the group of adjacent triangle patches of each data point is defined as a sub-domain. On each sub-domain, a weight function is defined. Last, by blending of three weight functions on the overlapped triangles, local MQ interpolation is completed. Consequently, it is compared with the global MQ interpolation using several sample data and functions.

키워드

참고문헌

  1. R.E.Barnhil, 'Surfaces in Computer aided geometric design : A survey with new results,' Computer Aided Geometric Design 2, pp.1-17, 1985 https://doi.org/10.1016/0167-8396(85)90002-0
  2. G. Farin, Curves ad Surfaces in Computer Aided Geometric Design 4th, Academic Press, Boston, 1996
  3. H. Ferguson, A. Rockwood, J. Cox, 'Topological design of sculptured surfaces,' Computer Graphics 26(3), pp.149-156, 1992 https://doi.org/10.1145/142920.134031
  4. H. Ferguson, A. Rockwood, 'Multiperiodic functions for surface design,' Computer Aided Geometric Design 10, pp.315-328, 1993 https://doi.org/10.1016/0167-8396(93)90044-4
  5. P. Firby, C. Gardiner, Surface Topology, Wiley, New York, 1982
  6. R. Franke, 'Scattered data Interpolation : Tests of some methods,' Mathematics of Computation 38, pp.181-200, 1982 https://doi.org/10.2307/2007474
  7. R. Franke, 'Smooth interpolation of scattered data by local thin plate splines,' Computer and Mathematics with Applications, 8, pp.273-281, 1982 https://doi.org/10.1016/0898-1221(82)90009-8
  8. R. Franke, G.M. Nielson, 'Scattered data interpolation and application : A tutorial and Survey,' in Hagen, H., Roller, D. (ed.), Geomertic Modeling, Springer, pp.131-160, 1991
  9. R.L. Hardy, 'Multiquadric equations of topography and other irregular surfaces,' Journal Geophysical Research, 76, pp.1905-1915, 1971
  10. R.L. Hardy, 'Theory and Applications of the multiquadric biharmonic method,' Computers and Mathematics with Applications, 19, pp.163-208, 1990 https://doi.org/10.1016/0898-1221(90)90272-L
  11. J. Hoschek, D. Lasser, Fundamental of Computer Aided Geometric Design, AK Peters, Wellesley, Massachusetts, 1993
  12. B. Iversen, Hyperbolic Geomery, Cambridge University Press, Cambridge, 1992
  13. J.G. Ratcliffe, Foundations of Hyperbolic manifolds, Graduate Texts in Mathematics 149, Springer Verlag, 1994
  14. A. Rockwood, H. Park, 'Interactive Design of Smooth Genus N Objects using Multiperiodic Functions and Applications,' International Journal of shape modeling, Vol.5, No.2, pp.135-157, 1999 https://doi.org/10.1142/S0218654399000149
  15. T.A. Foley, S. Dayanand and D. Zeckzer, 'Localized radial basis methods using rational triangle patches,' Computing, Vol.10, pp.163-176, 1995
  16. J. Duchon, 'Splines minimizing rotation-invariant seminorms in Sobelev spaces,' In Constructive Theory of Functions of Several Variables, (Edited by W. Schempp and K. Zeller), Lecture Notes in Mathematics 571, Springer, New York, pp.85-100, 1977