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A New Unified Scheme Computing the Quadrature Weights, Integration 
and Differentiation Matrix for the Spectral Method 

 
 

Chang-Joo Kim*, Joon-Goo Park* and Sangkyung Sung† 
 

Abstract – A unified numerical method for computing the quadrature weights, integration matrix, and 
differentiation matrix is newly developed in this study. For this purpose, a spline-like interpolation 
using piecewise continuous polynomials is converted into a global spline interpolation formula, with 
which the quadrature formulas can be derived from integration and differentiation of the transformed 
function in an exact manner. To prove the usefulness of the suggested approach, both the Lagrange and 
tension spline interpolations are represented in exactly the same form as global spline interpolation. 
The applicability of the proposed method on arbitrary nodes is illustrated using two different sets of 
nodes. A series of validations using three test functions is conducted to show the flexibility in selecting 
computational nodes with the present method. 
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1. Introduction 
 
Numerical methods for system analysis and design 

optimization are widely studied in many engineering problem, 
where much effort is paid on selecting node or boundary 
conditions in each applications [1-3]. In consideration of 
both efficiency and accuracy, this paper proposes a new 
unified numerical scheme in the computation of the 
quadrature weights, integration matrix, and differentiation 
matrix for spectral methods, collectively referred to in this 
paper as the coefficients for quadrature formulas (CQFs). 
The Gauss-type formulas are frequently used in solving 
the differential and integro-differential equations arising 
in many engineering and scientific areas, since they can 
provide extreme accuracy and high convergence at an 
exponential rate to iterative analyses for problems with 
well-behaved solutions [4-7]. CQFs for spectral methods 
are generally derived using the orthogonal properties 
among interpolating polynomials. Many of them, expressed 
in an analytic form, are easily accessible in the literature 
[8-10]. Derivation of CQFs generally requires rigorous 
application of complex function theories and is strictly 
dependent on the types of interpolating functions and 
quadrature nodes, which may cause inconvenience when 
they are required for other interpolating functions and 
quadrature nodes different from the standard ones. 

This work proposes a new numerical approach in the 
computation of CQFs that requires only information on 
the computational nodes and can retain the same level of 

accuracy as traditional methods. For this purpose, the spline 
interpolation approach utilizing the piecewise continuous 
polynomials is used, rather than the global Lagrange 
interpolation. The spline-like interpolation function can 
be converted into a global spline interpolating (G-SPIN) 
formula that has exactly the same form as in the global 
Lagrange interpolation. CQF computations are performed 
using integration and differentiation of the G-SPIN formula 
in an exact manner. As a result, computed CQFs can 
attain high precision equivalent to those obtained using 
the traditional spectral method. This paper shows that 
Lagrange interpolation can be represented by a G-SPIN 
formula. Therefore, Gauss-type formulas for any kind of 
computational node can be computed using the proposed 
methods. The present method is validated through a series 
of applications using Legendre-Gauss, Legendre-Gauss-
Lobatto, and Chevyshev-Gauss-Lobatto points and by 
showing that a high accuracy in predicting CQFs is 
obtained and equivalent to those reached using the traditional 
quadrature formulas.  

The extended applicability of the proposed method to 
solutions on arbitrary nodes is shown next. For this 
purpose, two different sets of nodes are considered. One 
is generated using the coordinate transformation devised 
by the authors [11] for more uniformly distributed nodes 
than those obtained using the traditional spectral method. 
The other is a set of uniform nodes known as the worst 
possible choice for polynomial interpolation, with which 
the derived formulas are extremely inaccurate as mentioned 
in [4] and [12]. The Lagrange and tension spline 
interpolations over these sets of nodes are investigated 
by applying the present method to three carefully selected 
test functions and by comparing the resultant absolute 
errors in predicting integration and differentiation for those 
functions. The results of comparative studies demonstrate 
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that the quadrature weights can be retained positivity with 
the tension spline interpolation regardless on the number 
of nodes. Whereas, the Lagrange interpolation show 
highly oscillatory behaviors in the quadrature weights, 
some of which become negative, as the number of nodes 
are increased. Therefore, the tension spline is more robust 
for uniform nodes than the Lagrange interpolation. In 
addition, it is indicated that the applications of advanced 
grid topologies, such as the local adaptive grid and multi-
grid techniques, is possible to enhance both accuracy 
and convergence for the iterative solutions based on the 
quadrature formula with the flexibility allowed by the 
preset method in selecting computational nodes. 

 
 
2. Unified Quadrature Formulas using Spline 

Interpolation 
 
The spline interpolation for a set of function data 

M
mmm tff 0)}({ ==  given over the computational nodes 

M
mmt 0}{ =  can be represented using the )1()1( +×+ NM  

unknown coefficients { } NnMm
nmnma ==

==

,
0,0,  as 
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where N is the leading order of the piecewise continuous 
interpolating polynomials and ]1,0[∈mτ is a non-
dimensional independent variable defined by  
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where mmm ttt −=Δ +1 . 

For deriving CQFs corresponding to the set of nodes 
M
mmt 0}{ = , this paper makes the following assumption, the 

rationale of which will become clear in the later part of this 
section. 

 
Assumption: The unknown coefficient nma ,  in (1) can 

be represented by a linear combination of function values 
M
mmf 0}{ =  as  
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Using the assumption, the function can be approximated 

over ],[ 1+∈ mm ttt  with the following G-SPIN formula. 
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The partial integration and the pth derivative of the 

function at any points over 1[ , ]m mt t t +∈ can be 
approximated using (6) - (8), which come from their exact 
derivation using (4) and (5). 
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The partial integration over 0[ , ]jt t t∈  and the 

differentiation at jt  can be represented by 
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Therefore, the CQFs can be represented for the 

traditional spectral method, where the domain [ ]Mtt ,0  of 
interests is transformed into [ 1, 1]−  using the affine 
transformation [4-7]. 
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where 
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Therefore, once the coefficients { } MkNnMm

knmknm
===
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0,0,0,,α are 

known for the set of arbitrary nodes Mm
mmt
=
=0}{ , the 

corresponding CQFs can be computed using (12) ~ (17).  
To access the usefulness of the assumption and the 

resultant formulas in obtaining CQFs, we first formulate 
the coefficients { }knm ,,α  corresponding to the Lagrange 
interpolation as follows. The Lagrange interpolation uses 
continuous polynomials with global support, but it can be 
reformulated using piecewise continuous polynomials of 
the same form as the G-SPIN formula. For this, the 
following reformulation is applied for 1[ , ]m mt t t +∈  using 
the definition given in (2). 
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The required coefficients can be obtained using the 

following recursive procedures. 
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Therefore, the Lagrange interpolation for a data set 

{ } Nm
mmm ft =
=0),(  defined over arbitrarily distributed nodes can 

be reduced to G-SPIN form as shown in (4) and (5). The 
corresponding CQFs can be computed using (12) ~ (17).  

This procedure is represented for the Lobatto-type 
quadrature points containing two endpoints in the domain 
of interest. However, minor modifications are sufficient for 
its extended application to other types of nodes. As an 

example with the Radau-type quadrature points, the given 
data set can be defined by Nm

mmm tf =
=1},{  with the order of 

interpolating polynomials 1−= NM . Even in this case, the 
coefficients MkNn

knkn
=−=

==
,1
1,0,,0 }{α  corresponding to the first 

interval [ ]10 , ttt∈  can be obtained using the procedures 
shown in (i)-(iii) for each of the Lagrange interpolation 
polynomials defined with N Radau-type points { } Nm

mmt
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Therefore, the proposed method can be used without 
limits for other types of nodes, such as Gauss-type and 
flipped Radau-type points, and regardless of the adopted 
orthogonal polynomials, such as Legendre and Chebyshev 
polynomials. 

The multiple derivatives of the function can easily be 
formulated using the G-SPIN formula shown in (4) and (5). 
The differentiation matrices for obtaining higher function 
derivatives are typically obtained by recursively applying 
the differentiation formula given in (14). Using the 
following definition for vectors and matrices, 
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the first derivative can be expressed by 
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The G-SPIN formula allows multiple differentiation to 

get the pth derivatives of the function at each node, as 
shown in (10) and (11). If the components of the matrix 
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3. Validation of the Proposed Method 
 
The proposed formulas for computing CQFs are validated 

using existing formulas available for the pseudospectral 
methods. For this purpose, we consider three sets of 
quadrature points defined by (a)-(c) with the corresponding 
formulas for the computation of CQFs. 

 
(a) Legendre-Gauss (LG) points Nk
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(b) Legendre-Gauss-Lobatto (LGL) points Nk

k
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(c) Chebyshev-Gauss-Lobatto (CGL) points Nk
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In these equations the orthogonal polynomials Lj (t) and 

)(tTk  represent the j th Legendre and k th Chebyshev 
polynomials, respectively. The integration matrices for (a) 
and (b) come from Axelson’s algorithm derived using the 
Christoffel-Darboux identity theorem for the kernel 
function defined with orthogonal polynomials [9]. The 
integration matrix for (c) represents the Clenshaw-Curtis 
algorithm for Chebyshev polynomials [10, 13]. The 
accuracy of (12)~(17) is estimated from the root-mean-
squares (RMS) value of the differences in the components 
of the CQFs, defined by  

 
 LGL

kjkjkj DDD ,,,
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Table 1. Normalized differences in the CQFs 

LG points LGL points CGL points 
M 

nnn
DIw ΔΔΔ )10( 13×  nnn

DIw ΔΔΔ )10( 13×  nnn
DIw ΔΔΔ )10( 13×  

21 
41 
61 
81 
101 
121 
141 
161 
181 
201 

0.0187  0.0171  0.0915 
0.0197  0.0182  0.0922 
0.0276  0.0255  0.1529 
0.0316  0.0293  0.4563 
0.0324  0.0301  0.2112 
0.0496  0.0481  3.4201 
0.0575  0.0533  2.2772 
0.0522  0.0488  1.1952 
0.0501  0.0467  1.7362 
0.0580  0.0560  0.1236 

0.0074  0.0074  0.0132 
0.0175  0.0165  0.0459 
0.0229  0.0225  0.1283 
0.0318  0.0299  0.1046 
0.0329  0.0301  0.2381 
0.0397  0.0382  0.7164 
0.0445  0.0420  1.7351 
0.0442  0.0413  0.3086 
0.0548  0.0521  1.0757 
0.0569  0.0558  3.0018 

0.0114  0.0101  0.0333 
0.0188  0.0166  0.0411 
0.0389  0.0328  0.2364 
0.0503  0.0452  0.3324 
0.0738  0.0655  0.6785 
0.0962  0.0802  0.4380 
0.0642  0.0583  1.3944 
0.1313  0.1076  1.4977 
0.1214  0.1126  1.5792 
0.1203  0.1099  1.0221 
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where kjD ,
~  is computed using (10). The normalized norm 

defined by RMSRMSn
DDD /Δ=Δ  is used for convenience 

in comparison. 
Table 1 shows that the computed results and the 

proposed method can predict CQFs regardless of the 
number of nodes at a level of accuracy equivalent to that of 
spectral methods. 

The computational domain typically includes both end 
points to impose the initial and final conditions. As an 
example of the differentiation method with LG points, the 
modified Lagrange interpolation functions are used openly 
to include the effect of the initial end point. The Lagrange 
interpolation functions for the LG points 1

1}{ −=
=

Mj
jjt  and the 

approximation of the function and its first derivatives at 
each node can be represented by (35) and (36). 
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The corresponding modified Lagrange interpolation 

functions, the first of which corresponds to the initial end 
point 10 −=t , are typically defined as 
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The function and its first derivative at each node can be 

approximated with 1
0}{ −=

=
Mj

jjf  as 
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where LG

kjD ,
~  can be defined using (36) and (37) for 
Nj ,,0=  and 1,,1 −= Mk  as  
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The elements corresponding to 0=k  can be computed 

using the fact that the derivative of a constant function is 
uniformly zero at all nodes. 
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These derivations are typically used in the spectral 
method. The modified differentiation matrix is obtainable 
directly from the G-SPIN formula by including the data 

),( 00 ft  in the data set defined over the LG points. 
Likewise, the elements related to the final endpoint are 
easily computed in the same manner, if required. 
Consequently, the proposed method allows straightforward 
computing of all elements of the differentiation matrix 
related to all nodes Mj

jjt =
=0}{  including two end points, 

regardless of the types of nodes and without computing the 
modified differentiation matrix using formulas such as (40) 
and (41).  

The accuracy of the proposed method is validated using 
the following three test functions selected from [14]. Fig. 1 
shows these functions over ]1,1[−∈t . 

 
Function 1: ( ) ( )tttf 135sin377cos)(1 +=  
Function 2: )(erf)2ln()(2 tettf π+=  
Function 3: )316cos()( 3

3 tetf t π−=  
 
The error function erf(y) in f2 (t) is an entire function 

defined by (42) and can be approximated using the series 
expansion of the exponential function as shown in (43). 
Therefore, the first derivative of f2 (t) can be approximated 
by (45). 
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The accuracy of (12)~(17) is estimated using the RMS 

norms of the absolute error vectors for partial integration 
and differentiation and by the absolute value of the 
integration error over t∈ [-1, 1], presented with jIΔ , 
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Fig. 1. Test functions 
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jDΔ , and IΔ , respectively. The integrations over the 
entire domain for f1(t) and f2(t) are given, respectively, 
by I2 (-1, 1) ≈ 0.175664900305971 and I3 (-1, 1)=-
0.176358246030565 [14]. These values are used to 
measure the absolute integration errors. Fig. 2 shows the 
computational errors using different formulas and with 
varying numbers of nodes for f1 (t). 

Fig. 3 shows the results for f2 (t) and f3 (t). The present 
method shows nearly the same level of accuracy as the 
conventional methods in both the integration and the 
differentiation varying the number of nodes. The present 
method is more advantageous in obtaining the highly 
accurate first derivative for f1 (t) and f3 (t) in the case when 
the number of nodes is sufficiently large to provide 
machine precision. The LGL points are the better selection 
for accurate integration than the CGL points for all test 
functions. 

 
 

4. Extension to Spline Interpolation 
 
Since the formulas given in (12)-(17) are derived on the 

basis of the assumption shown in (3), other interpolations 
rather than the Lagrange interpolation can be used, once 
they are represented in the G-SPIN form. As shown in the 
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Fig. 2. Computational errors for f1 (t). 
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Fig. 3. Computational errors for f2 (t) and f3 (t). 
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authors’ paper [12] and from the present study, the spline 
interpolation is a natural choice for the G-SPIN formula. 
For completeness, we repeat the main results of the earlier 
paper in this Section with detailed procedures for the 
derivation of the G-SPIN formula for spline interpolation. 
From the definition given by (1), the function values and 
its derivatives up to the kth order can be approximated at 
each node by 
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The unknown coefficients { } NnMm

nmnma ==

==

,
0,0,  for spline 

interpolation are typically determined by imposing the 
following conditions over the computational nodes. 

 
i) function values at each node 
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ii) continuity of the function and its higher derivatives at 

each inter-connecting node 
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iii)  (N-1) additional conditions to close the solution 
There exist many alternatives for defining the additional 

conditions (iii). The most widely used among them are the 
natural spline and the not-a-knot spline. The natural spline 
can be obtained by setting higher order derivatives at two 
end points to zeroes as 
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where N0 and NM are positive integers and can be selected 
under the following condition. 
 
 10 −=+ NNN M  

In contrast, the not-a-knot spline imposes continuity 
conditions for the N th order derivatives near two end points 
with the same condition in selecting N0 and NM, such as 
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or 0, =Nja . 
 
From the conditions given in (48)-(53), the unknown 

coefficients { } NnMm
nmnma ==

==

,
0,0,  can be obtained by solving the 

following linear algebraic equation. 
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where a and f are defined by 
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The coefficient matrix C has the dimension )1( +NM -

by- )1( +M  and most of its components are zeroes, except 
at the rows related to condition (i) when the natural or not-
a-knot spline is used. The matrix M is easily defined by the 
coefficients { } NnMm

nmnma ==

==

,
0,0,  in (48) ~ (53).  

Therefore, the coefficients { } MmNn
mnknm

==

==

,
0,0,,α  correspond-

ding to the function value fk can be computed from the 
solution of (54) by substituting the elements of the function 
vector with ),0( Mjf jkj ==δ . Therefore, the CQFs 
corresponding to the spline interpolation can be derived 
using (12) ~ (17) regardless of what kinds of (N-1) 
additional conditions (iii) are imposed. 

Next, we consider the application of the proposed 
method using the tension spline interpolation. The tension 
spline is not a kind of the piecewise continuous polynomial 
interpolation. However, it will be shown that the tension 
spline interpolation can be represented by the G-SPIN 
formula. The tension spline interpolation for a data set 
{ } Mm

mmm ft =
=0),(  related to a function ],[)( 0

2
fttCtf ∈  can be 

defined using the solution of the fourth order differential 
equation [16] for each time interval ],[ 1+∈ mm ttt  with an 
adjustable tension parameter mρ

~  as given by 
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with the following boundary conditions 
 
 1111 )(,)(,)(,)( ++++ ′′=′′′′=′′== mmmmmmmm ftyftyftyfty  (56) 

 
and using the definition given in (3), the solution of (55) 
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can be represented by 
 

 

  (57) 

 
The unknown second derivatives { } Mm

mmf
=
=

′′ 0  are typically 
determined by imposing the continuity conditions for the 
first derivatives at each interconnecting node and by 
adding two end conditions. The possible selection of two 
end conditions is exemplified in [13] with the following 
three types. 

 
Type I: mm ftyfty ′=′′=′ )(,)( 00   
Type II: 0)()( 0 =′′=′′ mtyty  
Type III: mm ftyfty ′′=′′′′=′′ )(,)( 00  
 
Types I and III need the direct specification of the first 

and second derivatives at two ends, which is inconvenient 
for general cases without prior information on these values. 
In addition, Type III is not the usual one for the tension 
spline as mentioned in [16], and the following modified 
end condition using the third derivatives is proposed for the 
application of the present G-SPIN formula. 
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Therefore, the first and third derivatives of the function 

over ],[ 1+∈ mm ttt can be approximated by 
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The continuity conditions for the first derivatives can be 

expressed as 
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Two end conditions shown in (58) can be represented by 
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As the results of (60) and (61), the unknown second 

derivatives { } Mm
mmf
=
=

′′ 0  can be obtained by solving the 
following system of the linear algebraic equations in the 
same form as given by (54). 
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The trigonometric hyperbolic functions in (59) can be 

expressed by the linear combination of mme τρ  and mme τρ−  
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In addition, the hyperbolic functions mme τρ±  can be 

approximated using the Taylor series expansion as 
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where )(⋅O  is the magnitude of the truncated terms. An 
accurate approximation for each of the exponential 
functions can be obtained by increasing N until )(⋅O  
reaches machine precision. Since 1≤mτ , the magnitude of 

)!1/(1 ++ NN
mρ  determines the required N, depending on 

the non-dimensional tension parameter mρ . Table 2 
shows the estimated magnitude of the truncated terms 
varying the non-dimensional tension parameter. With the 
tension parameter less than 01.0=ρ , the tension spline 
approaches the cubic spline (with N=3). For the extreme 
case with 0.10=ρ , more than 50 terms are required to 
get machine precision accuracy. However, this does not 
cause a large increase in computing time, because the 
arithmetic operations for (12)-(17) are simple enough, 
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once { } MmNnMk
mnkknm

===

===

,,
0,0,0,,α  is known, and the CQFs can be 

computed prior to their applications. Therefore, (59) can 
be reduced to G-SPIN form with high precision, and (12) 
~ (17) can be used in an efficient manner even with tension 
spline interpolation. 

The traditional quadrature nodes are highly clustered 
around two end points to preserve extreme accuracy, and 
there is no flexibility in adjusting their spacing. This kind 
of distribution can be inconvenient in some problems with 
rapid variations in function values around the midpoint 
of the computational domain, as shown in [11]. In addition, 
conventional quadrature weights and matrices for the 
integration and differentiation might be inadequate for 
good convergence in the iterative solution processes as the 
number of nodes is increased [11, 15]. Spline interpolation 
combined with the present approaches to the CQFs can 
be a good alternative allowing an adaptive selection of 
nodes considering the solution properties. This possibility 
will be demonstrated using two different kinds of node. 
First, more evenly distributed nodes generated using the 
coordinate transformation method shown in [8] are used. 
Second, uniform nodes are selected to show that arbitrary 
nodes can be utilized in real applications without limits 
on the number of nodes and without numerical failures 
using the spline interpolation. With the given set of 
conventional quadrature nodes { } Mm

mm
=
=0τ , the coordinate 

transformation proposed in [11] is devised to preserve 
symmetry about 0=τ  and monotonicity in the corres-
ponding computational nodes { } Mm

mm
=
=0ξ , using the following 

equation. 
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The coefficients aj (j =0,1,2, …) have been determined 

by the least squares method to match best with target 
uniform nodes { } Mm
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=+−= 0
target /21ξ . [11] showed the 

effect of the leading order, K, with the selection of the 
third-order transformation being recommended, since it 
provides the best integration accuracy for the series of 
polynomial test functions. The formulas for integration and 

differentiation can be defined easily in the transformed 
domain using (64) as 
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If accurate interpolations over an entire domain of 

interest are possible, the derivative ( ) ττξ ddf j /)(  can be 
estimated with high precision in principle. In such a case, 
the interpolating functions { } Mk
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be defined to approximate the function and its derivatives 
using the nodes { } Mk
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=0τ , respectively. 

The following formula can be derived from a simple 
manipulation to estimate ( ) ττξ ddf j /)(  with reference to 
Fig. 4. 
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where 
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However, it is not a simple task to find such 

interpolating functions with the required accuracy in real 
applications. Therefore, we use the local Lagrange inter-
polating functions using four-point data in this study to 
demonstrate the performance of (66), because the global 
one generally results in extremely poor accuracy, whereas 
the CQFs corresponding to the transformed nodes are 
directly obtainable using (12)~(17), which require only the 
information on node distribution. The Lagrange inter-
polation and the tension spline with the non-dimensional 
tension parameter of 01.0=ρ  are used for the applications 
of the present method. Fig. 5 compares the results of 
different approaches for f1(t) and f2(t). The integration 

Table 2. Truncation errors with varying tension parameter 

)!1/(1 ++ NNρ  N 
01.0=ρ  1.0=ρ  0.1=ρ  0.10=ρ  

5 
10 
15 
20 
25 
30 
35 
40 
45 
50 

1.3889E-15 
2.5052E-30 

1.3889E-09 
2.5052E-19 
4.7795E-30 

1.3889E-03 
2.5052E-08 
4.7795E-14 
1.9573E-20 
2.4796E-27 

1.3889E+03 
2.5052E+03 
4.7794E+02 
1.9572E+01 
2.4796E-01 
1.2161E-03 
2.6882E-06 
2.9893E-09 
1.8173E-12 
6.4470E-16 

 

 
Fig. 4. Schematic diagram to estimate ( ( )) /jdf dξ τ τ

using interpolation 
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and differentiation using the coordinate transformation 
are estimated using (65) and (66). The coordinate trans-
formation method shows nearly the same performance as 
the spectral method in predicting the integration as the 
number of nodes is increased. However, the differentiation 
computed with (66) contains a larger error than that with 

the present method when the tension spline interpolation 
is used. The present results with Lagrange interpolation 
show rapid increase in computational errors for both the 
differentiation and the integration with more than 40 nodes. 
Fig. 6 presents the effect of the number of nodes on the 
variation of the quadrature weights. 

The oscillatory behaviors are made more apparent by 
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Fig. 6. Quadrature weight distribution with varying node 

number. 
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Fig. 5. Computational errors for f1(t) and f2(t). 
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increasing the number of nodes, and some weights even 
become negative owing to poor interpolation accuracy, 
whereas the present method using the tension spline shows 
improvement in accuracy both for the integration and for 
the differentiation as the number of nodes is increased. 
Even though the same spectral accuracy cannot be obtained 
as that achievable with the spectral method using the LGL 
nodes, this method can be used for the problems, where 
reasonable accuracy is enough for its applications.  

Finally, the applicability of the proposed method on 

arbitrary nodes is investigated. Efforts to utilize arbitrary 
nodes include recent studies by Ross et al. [4] and Gong 
et al. [12] showing that convergence for the solution of 
nonlinear optimal control problems with pseudospectral 
methods can be guaranteed only when all quadrature 
weights are positive. They pointed out that analyses with 
more than ten uniform nodes might fail, because at least one 
of the weights becomes negative when Lagrange polynomials 
are used on uniform nodes. Regarding the positivity 
requirement for the weights, the spline interpolation is 
more robust than Lagrange interpolation, as shown in Figs. 
5 and 6, because the corresponding weights retain positivity 
even up to 150 nodes. For these reasons, we use the tension 
splines in the present investigation. Fig. 7 shows the 
prediction accuracy with different tension parameters for 
f1(t) and f2(t). As expected, uniform nodes present much 
worse accuracy than the LGL points. However, absolute 
prediction errors using uniform nodes gradually decrease 
as the number of nodes is increased. In the cases when 
these errors are allowable with a reasonable number of 
nodes, uniform nodes can also be used, meaning that 
arbitrary nodes can be selected for real applications in the 
mentioned conditions.  

Two aspects are considered for a further work. First, 
various grid topologies can be used to enhance both 
accuracy and convergence in the iterative solutions using 
the flexible selection of nodes allowed by the proposed 
method. The local adaptive grid and multi-grid techniques 
developed for computational fluid dynamics can be 
promising topologies for those purposes. 

Second, the proposed enhanced computation method can 
provide theoretic background in analyzing and resolving a 
group of optimal control and state estimation problems 
with the help of NOCP formulation. Application to optimal 
control problem with practical inequality constraints is 
already under investigation through pseudo-spectral method 
[15] and can be further extended to the optimal estimation 
problems with non-stochastic system models. 

 
 

5. Conclusion 
 
This paper proposed a unified approach to the 

computation of the coefficients for quadrature formulas, 
such as the quadrature weights, integration matrix, and 
differentiation matrix. These formulas were derived from 
the exact integration and differentiation of the piecewise 
continuous polynomials in the global spline interpolation 
formula. To demonstrate the usefulness of the present 
approach, it was shown that Lagrange and tension spline 
interpolation can be transformed into the global spline 
interpolation formula, regardless of the type of nodes. The 
present method was adopted to predict the coefficients of 
the quadrature formulas for the Legendre-Gauss, Legendre-
Gauss-Lobatto, and Chevyshev-Gauss-Lobatto points with 
levels of precision equivalent to those attainable with 
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traditional spectral methods. The proposed method was 
validated through the application of the present method to 
carefully selected test functions. The results are compared 
with those using the traditional quadrature formula. The 
integrations for all functions can be approximated in nearly 
the same level of accuracy with both methods. However, 
the differentiations can be more accurately predicted with 
the present method than with the traditional method.  

As an effort to extend the applicability of the proposed 
method to solutions on arbitrary nodes, nodes generated 
using an analytic coordinate transformation method and 
uniform nodes were selected to show the accuracy 
achievable with the proposed method. The coordinate 
transformation method can be used to compute the 
quadrature integration with high precision equivalent to 
that obtained using the spectral method at the Legendre-
Gauss-Lobatto nodes. However, it revealed poor accuracy 
in predicting the differentiation owing to high interpolation 
error when Local Lagrange interpolation was adopted.  

For the proposed method, spline interpolation out-
performed Lagrange interpolation in that its accuracy in 
predicting the integration and differentiation improved 
uniformly as the number of nodes increased for both sets 
of nodes. Therefore, the proposed method using spline 
interpolation can be used on arbitrary nodes when the 
incurred errors are allowable for real applications. The 
flexibility in selecting computational nodes allows the use 
of advanced grid topologies, such as the local adaptive grid 
and multi-grid techniques, to enhance both accuracy and 
convergence in iterative solution processes. As a result 
of this study, a unified method of computing quadrature 
weights, the integration matrix, and the differentiation 
matrix corresponding to the quadrature nodes for the 
spectral methods has been established. Furthermore, the 
proposed methods are applicable to arbitrarily distributed 
nodes.  
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