• Title/Summary/Keyword: Ginsenoside Composition

Search Result 107, Processing Time 0.02 seconds

Korean Red Ginseng saponin fraction exerts anti-inflammatory effects by targeting the NF-κB and AP-1 pathways

  • Lee, Jeong-Oog;Yang, Yanyan;Tao, Yu;Yi, Young-Su;Cho, Jae Youl
    • Journal of Ginseng Research
    • /
    • v.46 no.3
    • /
    • pp.489-495
    • /
    • 2022
  • Background: Although ginsenosides and saponins in Korea red ginseng (KRG) shows various pharmacological roles, their roles in the inflammatory response are little known. This study investigated the anti-inflammatory role of ginsenosides identified from KRG saponin fraction (RGSF) and the potential mechanism in macrophages. Methods: The ginsenoside composition of RGSF was identified by high-performance liquid chromatography (HPLC) analysis. An anti-inflammatory effect of RGSF and its mechanisms were studied using nitric oxide (NO) and prostaglandin E2 (PGE2) production assays, mRNA expression analyses of inflammatory genes and cytokines, luciferase reporter gene assays of transcription factors, and Western blot analyses of inflammatory signaling pathways using the lipopolysaccharide (LPS)-treated RAW264.7 cells. Results: HPLC analysis identified the types and amounts of various panaxadiol ginsenosides in RGSF. RGSF reduced the generation of inflammatory molecules and mRNA levels of inflammatory enzymes and cytokines in LPS-treated RAW264.7 cells. Additionally, RGSF inhibited the signaling pathways of NF-κB and AP-1 by suppressing both transcriptional factors and signaling molecules in LPS-treated RAW264.7 cells. Conclusion: RGSF contains ginsenosides that have anti-inflammatory action via restraining the NF-κB and AP-1 signaling pathways in macrophages during inflammatory responses.

Quality Changes in Red Ginseng Extract during High Temperature Storage (열처리(熱處理)에 의한 홍삼(紅蔘)엑기스의 성분변화(成分變化))

  • Choi, Jin-Ho;Kim, Woo-Jung;Yang, Jae-Won;Sung, Hyun-Soon;Hong, Soon-Keun
    • Applied Biological Chemistry
    • /
    • v.24 no.1
    • /
    • pp.50-58
    • /
    • 1981
  • The influence of high temperature storage on the chemical composition and color intensity of the concentrated red ginseng extract(RGE) was investigated. The concentrated RGE was prepared by extraction of red ginseng tails with water and concentrated under reduced pressure. Changes in free sugars, saponin patterns and brown color intensity were measured during 96 hours of heat treatment at various temperature. A decrease in the contents of glucose, fructose and sucrose was resulted as the brown color intensity increased during the storage. The sugar contents and color intensity showed rapid initial change followed by slowing down at higher temperature. A significant relationship was found between sugar content and browning rate. The saponin pattern measured by high performance liquid chromatography, particularly in the region of protopanaxtriol, was also affected significantly. The peak heights of ginsenoside -Re and $-Rg_1$ were decreased while those of ginsenoside $-Rg_2$ and -Rh group were increased.

  • PDF

The Comparative Understanding between Red Ginseng and White Ginsengs, Processed Ginsengs (Panax ginseng C. A. Meyer) (홍삼과 백삼의 비교 고찰)

  • Nam, Ki-Yeul
    • Journal of Ginseng Research
    • /
    • v.29 no.1
    • /
    • pp.1-18
    • /
    • 2005
  • Ginseng Radix, the root of Panax ginseng C. A. Meyer has been used in Eastern Asia for 2000 years as a tonic and restorative, promoting health and longevity. Two varieties are commercially available: white ginseng(Ginseng Radix Alba) is produced by air-drying the root, while red ginseng(Ginseng Radix Rubra) is produced by steaming the root followed by drying. These two varieties of different processing have somewhat differences by heat processing between them. During the heat processing for preparing red ginseng, it has been found to exhibit inactivation of catabolic enzymes, thereby preventing deterioration of ginseng quality and the increased antioxidant-like substances which inhibit lipid peroxide formation, and also good gastro-intestinal absorption by gelatinization of starch. Moreover, studies of changes in ginsenosides composition due to different processing of ginseng roots have been undertaken. The results obtained showed that red ginseng differ from white ginseng due to the lack of acidic malonyl-ginsenosides. The heating procedure in red ginseng was proved to degrade the thermally unstable malonyl-ginsenoside into corresponding netural ginsenosides. Also the steaming process of red ginseng causes degradation or transformation of neutral ginsenosides. Ginsenosides $Rh_2,\;Rh_4,\;Rs_3,\;Rs_4\;and\;Rg_5$, found only in red ginseng, have been known to be hydrolyzed products derived from original saponin by heat processing, responsible for inhibitory effects on the growth of cancer cells through the induction of apoptosis. 20(S)-ginsenoside $Rg_3$ was also formed in red ginseng and was shown to exhibit vasorelaxation properties, antimetastatic activities, and anti-platelet aggregation activity. Recently, steamed red ginseng at high temperature was shown to provide enhance the yield of ginsenosides $Rg_3\;and\;Rg_5$ characteristic of red ginseng Additionally, one of non-saponin constituents, panaxytriol, was found to be structually transformed from polyacetylenic alcohol(panaxydol) showing cytotoxicity during the preparation of red ginseng and also maltol, antioxidant maillard product, from maltose and arginyl-fructosyl-glucose, amino acid derivative, from arginine and maltose. In regard to the in vitro and in vivo comparative biological activities, red ginseng was reported to show more potent activities on the antioxidant effect, anticarcinogenic effect and ameliorative effect on blood circulation than those of white ginseng. In oriental medicine, the ability of red ginseng to supplement the vacancy(허) was known to be relatively stronger than that of white ginseng, but very few are known on its comparative clinical studies. Further investigation on the preclinical and clinical experiments are needed to show the differences of indications and efficacies between red and white ginsengs on the basis of oriental medicines.

Physicochemical Properties and Composition of Ginsenosides in Red Ginseng Extract as Revealed by Subcritical Water Extraction (아임계수 추출에 의한 홍삼 추출물의 진세노사이드 조성 및 이화학적 특성)

  • Lee, Joo-Mi;Ko, Min-Jung;Chung, Myong-Soo
    • Korean Journal of Food Science and Technology
    • /
    • v.47 no.6
    • /
    • pp.757-764
    • /
    • 2015
  • Red ginseng was treated by subcritical water extraction (SWE) whose two parameters were the extraction temperature ($105-150^{\circ}C$) and time (5-20 min) under a high pressure. The oBrix value, solid content, color difference, and turbidity of the red ginseng extract increased with increasing extraction time and temperature, while the pH decreased. The total concentration of ginsenosides in the red ginseng extract was maximal at $120^{\circ}C$ and 20 min. The concentrations of ginsenosides Rg3 and Rh1 were maximal at $150^{\circ}C$ and 15 min. The concentrations of Rg3 and Rh1 were respectively 3.5-5 times and 2-2.5 times higher than those treated by conventional extraction methods with hot water, ethanol, and methanol. SWE is a particularly effective method for the selective extraction of less-polar ginsenosides such as Rg3 which is well known to exert strong anticancer effects.

Characterization of Korean Red Ginseng (Panax ginseng Meyer): History, preparation method, and chemical composition

  • Lee, Sang Myung;Bae, Bong-Seok;Park, Hee-Weon;Ahn, Nam-Geun;Cho, Byung-Gu;Cho, Yong-Lae;Kwak, Yi-Seong
    • Journal of Ginseng Research
    • /
    • v.39 no.4
    • /
    • pp.384-391
    • /
    • 2015
  • It has been reported that Korean Red Ginseng has been manufactured for 1,123 y as described in the GoRyeoDoGyeong record. The Korean Red Ginseng manufactured by the traditional preparation method has its own chemical component characteristics. The ginsenoside content of the red ginseng is shown as Rg1: 3.3 mg/g, Re: 2.0 mg/g, Rb1: 5.8 mg/g, Rc:1.7 mg/g, Rb2: 2.3 mg/g, and Rd: 0.4 mg/g, respectively. It is known that Korean ginseng generally consists of the main root and the lateral or fine roots at a ratio of about 75:25. Therefore, the red ginseng extract is prepared by using this same ratio of the main root and lateral or fine roots and processed by the historical traditional medicine prescription. The red ginseng extract is prepared through a water extraction ($90^{\circ}C$ for 14-16 h) and concentration process (until its final concentration is 70-73 Brix at $50-60^{\circ}C$). The ginsenoside contents of the red ginseng extract are shown as Rg1: 1.3 mg/g, Re: 1.3 mg/g, Rb1: 6.4 mg/g, Rc:2.5 mg/g, Rb2: 2.3 mg/g, and Rd: 0.9 mg/g, respectively. Arginine-fructose-glucose (AFG) is a specific amino-sugar that can be produced by chemical reaction of the process when the fresh ginseng is converted to red ginseng. The content of AFG is 1.0-1.5% in red ginseng. Acidic polysaccharide, which has been known as an immune activator, is at levels of 4.5-7.5% in red ginseng. Therefore, we recommended that the chemical profiles of Korean Red Ginseng made through the defined traditional method should be well preserved and it has had its own chemical characteristics since its traditional development.

A study on manufacturing of red ginseng Makgeolli using the red ginseng starch and changes of physicochemical components of red ginseng Makgeolli during storage periods (홍삼 전분을 이용한 홍삼막걸리의 제조 및 이화학적 성분 변화)

  • Lee, Hwan;Kim, Yeong-Su;Kim, Do-Yeon;Kim, So-Young;Lee, Wan-Kyu;Lee, Sang-Myeong;Park, Jong-Dae;Shon, Mi-Yae
    • Food Science and Preservation
    • /
    • v.22 no.3
    • /
    • pp.369-376
    • /
    • 2015
  • This study was performed to develop the maufacturing processes of Makgeolli using red ginseng starch (RGS). After the fermentation of RGS with koji, nuruk, and yeast, the different temperature effects on the number of the yeast cells, the content of organic acid, free sugars, and total acid, and pH were investigated. There were no changes in the composition of the yeast cell number and content of organic acid amd during 20 days at $4^{\circ}C$. The content of free sugars (sucrose, glucose and mannose) and the pH value of red ginseng Makgeolli decreased during storage at $4^{\circ}C$. This meant that the total acid content and pH value increased after organic acid was produced from fermentation. Therefore, red ginseng Makgeolli is highly acidic and sour. Since high acidity helps improve storage conditions, so this developed red ginseng Makgeolli is considered safe for consumption. Furthermore, the total content of ginsenoside was 2.47 mg/mL, which was differentiate Makgeolli using red ginseng starch, with others. Therefore, new red ginseng Makgeolli is rich in organic acid, free sugars, and ginsenoside. As a result, its storage, taste, and flavor improved.

QUALITY OF KOREAN GINSENG DRIED WITH A PROTOTYPE CONTINUOUS FLOW DRYER USING FAR INFRARED RAY AND HEATED-AIR

  • Park, S. J.;Kim, S. M.;Kim, M. H.;Kim, C. S.;Lee, C. H.
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2000.11b
    • /
    • pp.388-395
    • /
    • 2000
  • This study was performed to examine the effects of infrared (IR)/heated-air combination drying on some quality attributes of Korean white ginsengs. Ginseng roots were dried in a dryer where both the far infrared ray and heated-air are available as drying energy sources. Diametral shrinkage, external color, total saponin content, and ginsenosides and free sugar composition of the IR/heated-air combination dried ginsengs were measured and compared with those of commercial white ginseng products. The external color became lower in lightness and higher in saturation as the IR radiating plate temperature increased. IR/heated-air combination dried white ginsengs at IR plate temperature of 100$^{\circ}C$ was comparable to the commercial white ginseng products in color characteristics. Diametral shrinkage ratios ranged from 20 to 36% and appeared to be independent on the different drying methods. No definite evidence could be found whether the IR/heated-air combination drying and the conventional. hot-air drying practice resulted in white ginsengs having different ginsenoside contents and compositions. No conclusion could be made on whether the various drying treatments used in the study had effects on the free sugar contents and compositions of white ginsengs.

  • PDF

Effect of Controlled Atmosphere and Modified Atmosphere Storage on the Apparent Quality and Saponin Component of Fresh and Red Ginseng (CA 및 MA 저장이 수삼 및 홍삼의 외관품질 및 사포인 조성에 미치는 영향)

  • 전병선;성현순
    • Journal of Ginseng Research
    • /
    • v.19 no.1
    • /
    • pp.62-72
    • /
    • 1995
  • During the controlled atmosphere storage (CA), fresh ginseng showed good appearance in quality, and other deterioration of freshness was not observed until 12 weeks. On the other hand, MA storage had kept freshness only in treatment of 1 until 8 weeks. There was no significant difference between treated and non-treated sample with preservatives, and not treated sample was not infected with various different fungi. Moisture contents and hardness of ginseng in all treatments were not changed much until 12 weeks, and surface shrinkage did not occur either. But shear stress increased somewhat in all treatments after 12 weeks. The granule of microstructure in tissue diminished slightly. The apparent Quality of red ginseng was good until 4 weeks of treatment. But as time passed, white skin and wrinkled skin were generated and darkened in its color. B-1 in CA and E-1 in MA were found to be the most favorable one. The content of crude saponin did not change significantly during storage of CA or MA by preservation conditions and period. Though a small increase in saponin content from 4.92% to 5.43% was recognized in B-1, which was treated with preservative and 6.0% In B-2, control, this could rather explain increment of soluble component by butanol. Thus, there was no change in total contents of ginsenoside pattern and composition of each content. The Rbl content in B-1 and B-2 were 0.98%, and 0.97%, respectively, whereas that of control was 0.96%. E-1 of MA, treated with preservative was 5.32% after 12 weeks, but was 5.73% in control, indicating that ginsenosides pattern was quite similar to that of CA storage.

  • PDF

Changes of Ginsenosides and Color from Black Ginsengs Prepared by Steaming-Drying Cycles (흑삼 제조과정 중 증포 횟수에 따른 색상 및 진세노사이드 함량 변화)

  • Nam, Ki-Yeul;Lee, Nu-Ri;Moon, Byung-Doo;Song, Gyu-Yong;Shin, Ho-Sang;Choi, Jae-Eul
    • Korean Journal of Medicinal Crop Science
    • /
    • v.20 no.1
    • /
    • pp.27-35
    • /
    • 2012
  • This study was conducted to investigate changes in composition of ginsenosides and color of processed ginsengs prepared by different steaming-drying times. Processed ginsengs were prepared from white ginseng with skin by 9-time repeated steaming at $96^{\circ}C$ for 3 hours and followed by hot air-drying at $50^{\circ}C$ for 24 hours. As the times of steaming processes increased, lightness (L value) decreased and redness (a value) increased in color of ginseng powders. Crude saponin contents and ginsenosides compositions in processed ginsengs prepared by different steaming-drying times were investigated using the HPLC method, respecively. Crude saponin contents according to increasing steaming-drying times decreased in some degree. In the case of major ginsenosides, the contents of $Rb_1$, $Rb_2$, Rc, Rd, Rf, Re, $RG_1$, Re were decreased with increase in steamimg times, but those of $Rh_1$, $Rg_3$, $Rk_1$ were increased after especially 3 times of steaming processes. Interestingly, in black ginseng were prepared by 9 times steaming processes, the content of ginsenoside $Rg_3$ was 8.20 mg/g, approximately 18 times higher than that (0.46 mg/g) in red ginseng. In addition, the ratio of the protopanaxadiol group and protopanaxatiol group (PD/PT) were increased from 1.9 to 8.4 due to increasing times of steamming process.

Influence of Panax ginseng formulation on skin microbiota: A randomized, split face comparative clinical study

  • Hou, Joon Hyuk;Shin, Hyunjung;Shin, Hyeji;Kil, Yechan;Yang, Da Hye;Park, Mi Kyeong;Lee, Wonhee;Seong, Jun Yeup;Lee, Seung Ho;Cho, Hye Sun;Yuk, Soon Hong;Lee, Ki Yong
    • Journal of Ginseng Research
    • /
    • v.46 no.2
    • /
    • pp.296-303
    • /
    • 2022
  • Background: Skin microbiota is important for maintenance of skin homeostasis; however, its disturbance may cause an increase in pathogenic microorganisms. Therefore, we aimed to develop a red ginseng formulation that can selectively promote beneficial bacteria. Methods: The effects of red ginseng formulation on microorganism growth were analyzed by comparing the growth rates of Staphylococcus aureus, S. epidermidis, and Cutibacterium acnes. Various preservatives mixed with red ginseng formulation were evaluated to determine the ideal composition for selective growth promotion of S. epidermidis. Red ginseng formulation with selected preservative was loaded into a biocompatible polymer mixture and applied to the faces of 20 female subjects in the clinical trial to observe changes in the skin microbiome. Results: Red ginseng formulation promoted the growth of S. aureus and S. epidermidis compared to fructooligosaccharide. When 1,2-hexanediol was applied with red ginseng formulation, only S. epidermidis showed selective growth. The analysis of the release rates of ginsenoside-Rg1 and -Re revealed that the exact content of Pluronic F-127 was around 11%. The application of hydrogel resulted in a decrease in C. acnes in all subjects. In subjects with low levels of S. epidermidis, the distribution of S. epidermidis was significantly increased with the application of hydrogel formulation and total microbial species of subjects decreased by 50% during the clinical trial. Conclusion: We confirmed that red ginseng formulation with 1,2-hexanediol can help maintain skin homeostasis through improvement of skin microbiome.