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Korean Red Ginseng saponin fraction exerts anti-inflammatory effects
by targeting the NF-kB and AP-1 pathways
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a b s t r a c t

Background: Although ginsenosides and saponins in Korea red ginseng (KRG) shows various pharma-
cological roles, their roles in the inflammatory response are little known. This study investigated the
anti-inflammatory role of ginsenosides identified from KRG saponin fraction (RGSF) and the potential
mechanism in macrophages.
Methods: The ginsenoside composition of RGSF was identified by high-performance liquid chromatog-
raphy (HPLC) analysis. An anti-inflammatory effect of RGSF and its mechanisms were studied using nitric
oxide (NO) and prostaglandin E2 (PGE2) production assays, mRNA expression analyses of inflammatory
genes and cytokines, luciferase reporter gene assays of transcription factors, and Western blot analyses of
inflammatory signaling pathways using the lipopolysaccharide (LPS)-treated RAW264.7 cells.
Results: HPLC analysis identified the types and amounts of various panaxadiol ginsenosides in RGSF.
RGSF reduced the generation of inflammatory molecules and mRNA levels of inflammatory enzymes and
cytokines in LPS-treated RAW264.7 cells. Additionally, RGSF inhibited the signaling pathways of NF-kB
and AP-1 by suppressing both transcriptional factors and signaling molecules in LPS-treated
RAW264.7 cells.
Conclusion: RGSF contains ginsenosides that have anti-inflammatory action via restraining the NF-kB
and AP-1 signaling pathways in macrophages during inflammatory responses.
© 2022 The Korean Society of Ginseng. Publishing services by Elsevier B.V. This is an open access article

under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Inflammation is a protective immune response from infection
with harmful pathogens and is a response to danger signals derived
from cellular stress [1e3]. However, chronic inflammation, which is
repeated inflammation and lasts for months to even years, has been

considered a major risk factor of numerous human diseases [4e6].
An inflammatory response is initiated by the interaction of pattern-
recognition receptors (PRRs) with the various molecular patterns
associated with pathogens and danger signals [7e9]. The initiation
of inflammatory response activates signal transduction pathways,
such as nuclear factor-kappa B (NF-kB), activated protein-1 (AP-1),
and interferon regulatory factors (IRFs) by stimulating the signaling
cascades of various intracellular inflammatory molecules. These
events result in the generation of inflammatory molecules and
transcriptional up-regulation of pro-inflammatory enzymes and
cytokines [10e13].

Korean ginseng (Panax ginseng Meyer), cultivated in far-east
Asia, is traditional herbal medicine and has been reported to play
an ameliorative role in numerous human diseases [14e18]. Fresh
ginseng has highmoisture content and decays easily; therefore, it is
necessary to produce red ginseng by repeating steaming and drying
several times. Interestingly, compared to fresh ginger, Korean red
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ginseng (KRG) shows higher chemical content and biological ac-
tivity with fewer adverse effects [19]. KRG improves essential bio-
logical functions, such as immune response, energy induction,
sexual functions, memory, cognitive functions, and offers antioxi-
dant activity [20e25]. KRG was also reported to have anti-
inflammatory activities by alleviating the inflammatory response
[16,26e31]; however, the KRG components that show anti-
inflammatory activities and the potential mechanism that mani-
fests these activities are still unclear.

Therefore, this study prepared the ginsenoside composition of
the KRG saponin fraction (RGSF) and investigated the anti-
inflammatory role of RGSF as well as the potential mechanism in
lipopolysaccharide (LPS)-activated macrophage, RAW264.7 cells.

2. Materials and methods

2.1. Materials

RGSF was kindly supplied from the Korea Ginseng Cooperation
(Daejeon, Korea). RAW264.7 and HEK293 cells were purchased at
the American Type Culture Collection (Manassas, VA, USA). Roswell
Park Memorial Institute 1640 (RPMI 1640) medium, fetal bovine
serum (FBS), phosphate-buffered saline (PBS), streptomycin, and
penicillin were purchased at Gibco (Grand Island, NY, USA). Lipo-
polysaccharide (LPS), crystal violet, 3-(4,5-dimethylthiazol-2-yl)-
2,5-diphenyltetrazolium bromide (MTT), luciferin, and poly-
ethyleneimine (PEI) were purchased at Sigma Aldrich (St Louis, MO,
USA). PCR primers were synthesized at Bioneer Inc. (Daejeon, Ko-
rea). Real-time PCR dye was purchased at PCR Biosystems (London,
United Kingdom). TRI reagent® was purchased at Molecular
Research Center Inc. (Cincinnati, OH, USA). MuLV reverse tran-
scriptase and Lipofectamine® 2000 reagent were purchased at
Thermo Fisher Scientific (Waltham,MA, USA). NF-kB-Luc, AP-1-Luc,
CREB-Luc, and TRIF-expressing constructs were purchased at
Addgene (Cambridge, MA, USA). Antibodies for Western blot
analysis were purchased at Cell Signaling Technology (Beverly, MA,
USA) and Santa Cruz Biotechnology (Dallas, Texas, USA). An
enhanced chemiluminescence systemwas purchased at AbFrontier
(Seoul, Korea).

2.2. Cell culture

RAW264.7 and HEK293 cells were incubated in RPMI 1640
medium that contains 10% heat-inactivated FBS and penicillin/
streptomycin at 37 �C in a 5% CO2 incubator. The cells were freshly
maintained by splitting them three times per week.

2.3. Cell viability assay

The cytotoxicity of RGSF was quantified by an MTT method as
previously described [32]. In brief, RAW264.7 cells were incubated
with various doses of RGSF for 24 h, and the numbers of live cells
were quantified and compared by an MTT assay.

2.4. NO production assay

RAW264.7 cells incubated with various doses of RGSF or pred-
nisolone (Pred) for 30 min were activated with LPS (1 mg/mL) for
24 h, after which NO amount in culturemediumwas quantified by a
Griess assay as previously described [33].

2.5. PGE2 production assay

RAW264.7 cells incubated with various doses of RGSF for 30min
were activated with LPS (1 mg/mL) for 24 h, after which PGE2

amount in culture medium was quantified by an enzyme immu-
noassay as described previously [34].

2.6. Quantitative real-time polymerase chain reaction (PCR)

RAW264.7 cells incubated with various doses of RGSF for 30min
were activatedwith LPS (1 mg/mL) for 6 h, after which total RNAwas
extracted using TRI reagent®. cDNA was immediately synthesized
from the extracted RNA using a MuLV reverse transcriptase, and
mRNA of iNOS, TNF-a, COX-2, and IL-1b were quantified by a
quantitative real-time polymerase chain reaction (PCR) using
primers specific for each target. The information of primers is
summarized in Table 1.

2.7. Luciferase reporter gene assay

RAW264.7 cells incubated with various doses of RGSF and LPS
(1 mg/mL) were transfected with either an NF-kB-Luc, AP-1-Luc, or
CREB-Luc construct along with a b-gal construct using Lipofect-
amine® 2000 reagent 48 h. HEK293 cells transfected with an AP-1-
Luc construct along with a b-gal construct using PEI for 24 h were
treated with various doses of RGSF for another 24 h. AP-1-Luc re-
porter activity was quantified by incubating luciferin with cell
lysates.

2.8. Western blot analysis

RAW264.7 cells incubated with RGSF (100 mg/mL) for 30 min
were activated with LPS (1 mg/mL), and nuclear as well as whole-
cell lysates were prepared as previously described [33]. Western
blot analysis was conducted as previously described [33] with the
antibodies specific for each target.

2.9. High-performance liquid chromatography analysis

Types and amounts of ginsenosides in RGSF were analyzed by
high-performance liquid chromatography (HPLC) as previously
described [35].

2.10. Statistical analysis

All data were described as the mean ± standard error of the
mean (SEM) of independent experiments performed more than
three times. Statistical significance between the control versus
experimental groups was evaluated by either a Mann-Whitney test
or one-way ANOVA. P values less than 0.05 were considered sta-
tistically significant.

Table 1
The information of primers used in this study for quantitative real-time PCR.

Target Sequence (50e30)

iNOS F CCCTTCCGAAGTTTCTGGCAGCAG
R GGCTGTCAGAGCCTCGTGGCTTTGG

TNF-a F TTGACCTCAGCGCTGAGTTG
R CCTGTAGCCCACGTCGTAGC

COX2 F CACTACATCCTGACCCACTT
R ATGCTCCTGCTTGAGTATGT

IL-1b F TAGAGCTGCTGGCCTTGTTA
R ACCTGTAAAGGCTTCTCGGA

GAPDH F CAATGAATACGGCTACAGCAAC
R AGGGAGATGCTCAGTGTTGG
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3. Results and discussion

In this study, ginsenoside components were identified in RGSF,
and anti-inflammatory role of RGSF was evaluated in LPS-activated
macrophage, RAW264.7 cells. The types and amounts of panaxdiol
ginsenosides in RGSF were first determined by HPLC analysis; the
panaxdiol ginsenosides (Gs) G-Rg1, G-Re, G-Rf, G-Rb1, G-Rc, G-Rb2,
G-Rb3, G-Rd, G-F2, and G-Rg3 were identified (data not shown), as
reported previously [36,37]. The total amount of these ginsenosides
was 520.6 mg/g, and the amount of each ginsenoside is summa-
rized in Supplementary Table 1. Among the identified ginsenosides,
the amount of G-Rb1 was the highest (158.0 mg/g), followed by G-
Rc (107.6 mg/g) and G-Rb2 (80.0 mg/g). Numerous previous studies
have demonstrated an anti-inflammatory role of G-Rb1 [15,38,39],
G-Rc [37,40], and G-Rb2 [15,37,40], strongly indicating that RGSF
may also have anti-inflammatory effect.

Therefore, the anti-inflammatory effects of RGSF and its un-
derlying molecular mechanism were examined in LPS-activated
RAW264.7 cells. Pharmacological agents are useless if they
exhibit cytotoxicity or adverse effects. Therefore, RGSF cytotoxicity
was tested in macrophages, and RGSF exerted no cytotoxicity in
RAW264.7 at any of the test doses (Fig. 1A), indicating that it con-
fers no cytotoxicity at the doses tested in this study. Anti-

inflammatory effect of RGSF was nest investigated in LPS-
activated RAW264.7 cells. RGSF decreased NO and PGE2 produc-
tion (Fig. 1B) and also down-regulated mRNA levels of pro-
inflammatory enzymes, such as iNOS and COX-2 as well as cyto-
kines, such as TNF-a and IL-1b in LPS-activated RAW264.7 cells
(Fig. 1C). Meanwhile, prednisolone showed significant suppression
of NO production as previously reported [41], implying that the
experimental condition of this study is properly established. Given
the results, ginsenosides in RGSF exert a strong anti-inflammatory
role by reducing inflammatory mediator production and the mRNA
levels of pro-inflammatory enzymes and cytokines inmacrophages.

An inflammatory response is induced by activating intracellular
signal transduction pathways of NF-kB, AP-1, and CREB in macro-
phages, therefore, inhibitory role of RGSF in the activation of these
inflammatory signal transduction pathways was evaluated in the
LPS-activated RAW264.7 cells. Inhibitory effect of RGSF on the
luciferase reporter gene activity induced by NF-kB, AP-1, and CREB
transcription factors was evaluated in LPS-activated
RAW264.7 cells as well as TRIF-transfected HEK293 cells. RGSF
markedly reduced AP-1-Luc reporter activity at 50 and 100 mg/mL
andmarginally reduced NF-kB-Luc reporter activity at 100 mg/mL in
the LPS-activated RAW264.7 cells (Fig. 2A). However, RGSF showed
no suppressive effect on CREB-Luc reporter activity at all doses (25,

Fig. 1. Suppressive role of RGSF on inflammatory mediator production and mRNA levels of pro-inflammatory enzymes and cytokines (A) RAW264.7 cells were incubated with RGSF
(0e100 mg/mL) for 24 h, and viable cells were quantified by an MTT assay. (B and D) RAW264.7 cells incubated with RGSF (0e100 mg/mL) or Pred (0e400 mM) for 30 min were
stimulated with LPS (1 mg/mL) for 24 h, and NO and PGE2 in culture mediumwere quantified by a Griess assay and enzyme immunoassay, respectively. (C) RAW264.7 cells incubated
with RGSF (0e100 mg/mL) for 30 min were stimulated with LPS (1 mg/mL) for 6 h, and mRNA levels of iNOS, TNF-a, COX-2, and IL-1b were quantified by quantitative real-time PCR.
*P < 0.05 and **P < 0.01 compared to the control.
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50 and 100 mg/mL) (Fig. 2A). Inhibitory effect of RGSF on AP-1-Luc
reporter activity was further confirmed in the TRIF-transfected
HEK293 cells, since TRIF is an intracellular adaptor that leads to
activation of the AP-1 signaling pathway [42]. RGSF significantly
suppressed AP-1 luciferase reporter gene activity at all doses in
TRIF-transfected HEK293 cells (Fig. 2B). Inflammatory signaling is
activated by the translocation of transcription factors into the nu-
cleus of macrophages [10,12,13], illustrating the suppressive effect
of RGSF on nuclear translocation of these transcription factors in
LPS-activated RAW264.7 cells. RGSF (100 mg/mL) markedly sup-
pressed AP-1 nuclear translocation, such as c-Jun (30 and 60 min),
c-Fos (60 min) (Fig. 2C), and p-ATF2 (15 and 30 min) (Fig. 2D), but

not p-Fra1 (Fig. 2C), in LPS-activated RAW264.7 cells. Additionally,
RGSF (100 mg/mL) also suppressed NF-kB nuclear translocation,
such as p65 (15 min), but not that of p50, in LPS-activated
RAW264.7 cells (Fig. 2E). Given the results, RGSF exerts an anti-
inflammatory effect via suppressing NF-kB and AP-1 transcription
factors during macrophage-mediated inflammatory response.

Many cytosolic molecules, such as kinases, mitogen-activated
protein kinases (MAPKs), and MAPK kinases (MAPKKs) in NF-kB
and AP-1 pathways are activated through phosphorylation in
macrophages during inflammatory response [10,12,13]. Since RGSF
suppressed NF-kB and AP-1 activation in macrophages during in-
flammatory response, the suppressive effect of RGSF extends to

Fig. 2. Suppressive role of RGSF on NF-kB, CREB, and AP-1 transcriptional activities (A) RAW264.7 cells co-transfected with NF-kB-Luc, AP-1-Luc, or CREB-Luc along with a b-gal
were incubated with RGSF (0, 25, 50, and 100 mg/mL) and LPS (1 mg/mL), and luciferase reporter activity was quantified. (B) HEK293 cells co-transfected with TRIF (1 mg/mL) and AP-
1-Luc along with a b-gal were incubated with RGSF (0e100 mg/mL), and AP-1-Luc reporter activity was quantified. (CeE) RAW264.7 cells 0e100 mg/mL with RGSF (100 mg/mL) for
30 minwere stimulated with LPS (1 mg/mL). Western blot analysis of phosphorylated and total forms of c-Jun, c-Fos, Fra1, Lamin A/C (C), ATF2 (D), and p65 (E) and p50. *P < 0.05 and
**P < 0.01 compared to the controls.
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activation of inflammatory molecules stimulating NF-kB and AP-1
transcription factors in LPS-activated RAW264.7 cells. RGSF
(100 mg/mL) inhibited phosphorylation of MAPKs, such as ERK (15,
30, and 60 min) and p38 (5, 15, and 30 min), but not JNK in LPS-
activated RAW264.7 cells (Fig. 3A). Inhibitory effect of RGSF on
MAPKKs activation was further evaluated in LPS-activated
RAW264.7 cells, and RGSF (100 mg/mL) was found to inhibit the
phosphorylation of MKK3/6 (10 min) and MEK1/2 (10 min), but not
MKK4/7 (Fig. 3B). In addition, the inhibitory effect of RGSF on
activation of inflammatory molecules in NF-kB signaling pathway
was evaluated in LPS-activated RAW264.7 cells, and RGSF (100 mg/
mL) increased phosphorylation-induced breakdown of IkBa (5, 15,
30, and 60 min) (Fig. 3C). Furthermore, suppressive effect of RGSF
on activation of IkBa-upstream inflammatory molecules was also
evaluated in LPS-activated RAW264.7 cells, and RGSF (100 mg/mL)
inhibited the phosphorylation of IKKa/b (5 and 15min), but not that
of PDK1 or p85 (Fig. 3D), as seen in the previous papers [36,43].
Given the results, RGSF exhibits its anti-inflammatory activity by
restraining activation of intracellular inflammatory molecules in
AP-1 and NF-kB pathways, such as ERK, p38, MKK3/6, MEK1/2,
IkBa, and IKKa/b in macrophages.

In conclusion, this study identified ginsenosides in RGSF and
demonstrated the anti-inflammatory role of RGSF in LPS-activated

Fig. 3. Suppressive effect of RGSF on NF-kB and AP-1 signaling pathways. (A, B, C, and D) RAW264.7 cells incubated with RGSF (100 mg/mL) for 30 min were stimulated with LPS
(1 mg/mL). Western blot analysis of phosphorylated and total forms of ERK, p38, and JNK (A), MKK3/6, MKK4/7, MEK1/2 (B), and b-actin, IkBa (C), and IKKa/b, AKT, PDK1, p85 (D), and
b-actin.

Fig. 4. Schematic summary of the RGSF-mediated anti-inflammatory effect in mac-
rophages stimulated by LPS.
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macrophages. RGSF contained various panaxadiol ginsenosides,
including Rg1, Re, Rf, Rb1, Rc, Rb2, Rb3, Rd, F2, and Rg3 that have
anti-inflammatory effects. RGSF exerted anti-inflammatory effects
without any cytotoxicity by reducing inflammatory mediator pro-
duction and mRNA levels of pro-inflammatory enzymes and cyto-
kines, which was accomplished by suppressing activation of AP-1
and NF-kB inflammatory signaling pathways during macrophage-
mediated inflammatory responses (Fig. 4). Taken together, the
findings of this study could increase the knowledge of the anti-
inflammatory effects mediated by KRG at a molecular level and
also provide insight into the use of KRG when developing anti-
inflammatory treatments that prevent and treat human inflam-
matory diseases.
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