• Title/Summary/Keyword: Gibbs

Search Result 556, Processing Time 0.025 seconds

A Bayesian test for the first-order autocorrelations in regression analysis (회귀모형 오차항의 1차 자기상관에 대한 베이즈 검정법)

  • 김혜중;한성실
    • The Korean Journal of Applied Statistics
    • /
    • v.11 no.1
    • /
    • pp.97-111
    • /
    • 1998
  • This paper suggests a Bayesian method for testing first-order markov correlation among linear regression disturbances. As a Bayesian test criterion, Bayes factor is derived in the form of generalized Savage-Dickey density ratio that is easily estimated by means of posterior simulation via Gibbs sampling scheme. Performance of the Bayesian test is evaluated and examined based upon a Monte Carlo experiment and an empirical data analysis. Efficiency of the posterior simulation is also examined.

  • PDF

A Comparison study of Hybrid Monte Carlo Algorithm

  • 황진수;전성해;이찬범
    • Proceedings of the Korean Statistical Society Conference
    • /
    • 2000.11a
    • /
    • pp.135-140
    • /
    • 2000
  • 베이지안 신경망 모형(Bayesian Neural Networks Models)에서 주어진 입력값(input)은 블랙 박스(Black-Box)와 같은 신경망 구조의 각 층(layer)을 거쳐서 출력값(output)으로 계산된다. 새로운 입력 데이터에 대한 예측값은 사후분포(posterior distribution)의 기대값(mean)에 의해 계산된다. 주어진 사전분포(prior distribution)와 학습데이터에 의한 가능도함수(likelihood functions)를 통해 계산되어진 사후분포는 매우 복잡한 구조를 갖게 됨으로서 기대값의 적분계산에 대한 어려움이 발생한다. 이때 확률적 추정에 의한 근사 방법인 몬테칼로 적분을 이용한다. 이러한 방법으로서 Hybrid Monte Carlo 알고리즘은 우수한 결과를 제공하여준다(Neal 1996). 본 논문에서는 Hybrid Monte Carlo 알고리즘과 기존에 많이 사용되고 있는 Gibbs sampling, Metropolis algorithm, 그리고 Slice Sampling등의 몬테칼로 방법들을 비교한다.

  • PDF

Bayesian Outlier Detection in Regression Model

  • Younshik Chung;Kim, Hyungsoon
    • Journal of the Korean Statistical Society
    • /
    • v.28 no.3
    • /
    • pp.311-324
    • /
    • 1999
  • The problem of 'outliers', observations which look suspicious in some way, has long been one of the most concern in the statistical structure to experimenters and data analysts. We propose a model for an outlier problem and also analyze it in linear regression model using a Bayesian approach. Then we use the mean-shift model and SSVS(George and McCulloch, 1993)'s idea which is based on the data augmentation method. The advantage of proposed method is to find a subset of data which is most suspicious in the given model by the posterior probability. The MCMC method(Gibbs sampler) can be used to overcome the complicated Bayesian computation. Finally, a proposed method is applied to a simulated data and a real data.

  • PDF

Bayesian analysis of random partition models with Laplace distribution

  • Kyung, Minjung
    • Communications for Statistical Applications and Methods
    • /
    • v.24 no.5
    • /
    • pp.457-480
    • /
    • 2017
  • We develop a random partition procedure based on a Dirichlet process prior with Laplace distribution. Gibbs sampling of a Laplace mixture of linear mixed regressions with a Dirichlet process is implemented as a random partition model when the number of clusters is unknown. Our approach provides simultaneous partitioning and parameter estimation with the computation of classification probabilities, unlike its counterparts. A full Gibbs-sampling algorithm is developed for an efficient Markov chain Monte Carlo posterior computation. The proposed method is illustrated with simulated data and one real data of the energy efficiency of Tsanas and Xifara (Energy and Buildings, 49, 560-567, 2012).

Thermodynamics for Formation of Each Stable Single Phase in BSCCO Thin Films

  • Yang, Sung-Ho;Park, Yong-Pil;Kim, Gwi-Yeol
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2000.11a
    • /
    • pp.104-105
    • /
    • 2000
  • High quality BSCCO thin films have been fabricated by means of an ion beam sputtering at various substrate temperatures, T$_{sub}$, and ozone gas pressures, PO$_3$. The correlation diagrams of the BSCCO phases appeared against T$_{sub}$ and PO$_3$are established in the 2212 and 2223 compositional films. In spite of 2212 compositional sputtering, Bi2201 and Bi2223 phases as well as Bi2212 one come out as stable phases depending on T$_{sub}$ and PO$_3$. From these results, the thermodynamic evaluations of ΔH and ΔS which are related with Gibbs'free energy change for single Bi2212 or Bi2223 phase are performed.ormed.i2212 or Bi2223 phase are performed.

  • PDF

On the Bayesian Statistical Inference (베이지안 통계 추론)

  • Lee, Ho-Suk
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2007.06c
    • /
    • pp.263-266
    • /
    • 2007
  • This paper discusses the Bayesian statistical inference. This paper discusses the Bayesian inference, MCMC (Markov Chain Monte Carlo) integration, MCMC method, Metropolis-Hastings algorithm, Gibbs sampling, Maximum likelihood estimation, Expectation Maximization algorithm, missing data processing, and BMA (Bayesian Model Averaging). The Bayesian statistical inference is used to process a large amount of data in the areas of biology, medicine, bioengineering, science and engineering, and general data analysis and processing, and provides the important method to draw the optimal inference result. Lastly, this paper discusses the method of principal component analysis. The PCA method is also used for data analysis and inference.

  • PDF

Bayesian Inference and Model Selection for Software Growth Reliability Models using Gibbs Sampler (몬테칼로 깁스방법을 적용한 소프트웨어 신뢰도 성장모형에 대한 베이지안 추론과 모형선택에 관한 연구)

  • 김희철;이승주
    • Journal of Korean Society for Quality Management
    • /
    • v.27 no.3
    • /
    • pp.125-141
    • /
    • 1999
  • Bayesian inference and model selection method for software reliability growth models are studied. Software reliability growth models are used in testing stages of software development to model the error content and time intervals between software failures. In this paper, we could avoid the multiple integration by the use of Gibbs sampling, which is a kind of Markov Chain Monte Carlo method to compute the posterior distribution. Bayesian inference and model selection method for Jelinski-Moranda and Goel-Okumoto and Schick-Wolverton models in software reliability with Poisson prior information are studied. For model selection, we explored the relative error.

  • PDF

A BAYESIAN ANALYSIS FOR PRODUCT OF POWERS OF POISSON RATES

  • KIM HEA-JUNG
    • Journal of the Korean Statistical Society
    • /
    • v.34 no.2
    • /
    • pp.85-98
    • /
    • 2005
  • A Bayesian analysis for the product of different powers of k independent Poisson rates, written ${\theta}$, is developed. This is done by considering a prior for ${\theta}$ that satisfies the differential equation due to Tibshirani and induces a proper posterior distribution. The Gibbs sampling procedure utilizing the rejection method is suggested for the posterior inference of ${\theta}$. The procedure is straightforward to specify distributionally and to implement computationally, with output readily adapted for required inference summaries. A salient feature of the procedure is that it provides a unified method for inferencing ${\theta}$ with any type of powers, and hence it solves all the existing problems (in inferencing ${\theta}$) simultaneously in a completely satisfactory way, at least within the Bayesian framework. In two examples, practical applications of the procedure is described.

DEFAULT BAYESIAN INFERENCE OF REGRESSION MODELS WITH ARMA ERRORS UNDER EXACT FULL LIKELIHOODS

  • Son, Young-Sook
    • Journal of the Korean Statistical Society
    • /
    • v.33 no.2
    • /
    • pp.169-189
    • /
    • 2004
  • Under the assumption of default priors, such as noninformative priors, Bayesian model determination and parameter estimation of regression models with stationary and invertible ARMA errors are developed under exact full likelihoods. The default Bayes factors, the fractional Bayes factor (FBF) of O'Hagan (1995) and the arithmetic intrinsic Bayes factors (AIBF) of Berger and Pericchi (1996a), are used as tools for the selection of the Bayesian model. Bayesian estimates are obtained by running the Metropolis-Hastings subchain in the Gibbs sampler. Finally, the results of numerical studies, designed to check the performance of the theoretical results discussed here, are presented.

Bayesian Method for Combining Results from Different Poisson Experiments

  • Cho, Jang Sik;Kim, Dal Ho
    • Communications for Statistical Applications and Methods
    • /
    • v.7 no.2
    • /
    • pp.533-540
    • /
    • 2000
  • The problem of information related to I poission experiments, each having a distinct failure rate $\theta$i I=1,2,…,I, is considered. Instead of using a standard exchangeable prior for $\theta$=($\theta$1,$\theta$2,…,$\theta$I), we consider a partition of the experiments and take the $\theta$i's belonging to the same partition subgroup to be exchangeable and the $\theta$i's belonging to distinct subgroups to be independent. And we perform Gibbs sampling approach for Bayesian inference on $\theta$ conditional on a partition. Numerical study using real data is provided.

  • PDF