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Bayesian Outlier Detection in Regression Model
Younshik Chung' and Hyungsoon Kim?

ABSTRACT

The problem of 'outliers’, observations which look suspicious in some
way, has long been one of the most concern in the statistical structure to
experimenters and data analysts. We propose a model for an outlier problem
and also analyze it in linear regression model using a Bayesian approach.
Then we use the mean-shift model and SSVS(George and McCulloch, 1993)’s
idea which is based on the data augmentation method. The advantage of
proposed method is to find a subset of data which is most suspicious in
the given model by the posterior probability. The MCMC method(Gibbs
sampler) can be used to overcome the complicated Bayesian computation.
Finally, a proposed method is applied to a simulated data and a real data.

Keywords: Gibbs sampler; Latent variable; Linear mixed normal model; Linear
regression model; Mean-shift model; Outlier; Variance-inflation model.

1. INTRODUCTION

The problem of ’outliers’, observations which look suspicious in some way,
has long been one of the most concern in the statistical structure to experimenters
and data analysts. In this paper, we propose a model for an outlier problem and
also analyze it using a Bayesian approach. The Bayesian approaches for outlier
detection can be classified to two procedures such as using alternative model for
outliers or not. For the method without having alternative model, the predictive
distribution is used in Geisser(1985) and Pettit and Smith(1985), or the posterior
distribution used in Johnson and Geisser(1983), Chaloner and Brant(1988) and
Guttman and Pena(1993). For alternative model, the mean-shift model or the
variance-inflation model is used in Guttman(1973) and Sharples(1990). Let Y be
an observation vector from N(u,o?). The mean-shift model is that a suspicious
observation is distributed as N(u + m,c?). If m is not a zero, the correspond-
ing observation is decided as an outlier, Guttman(1973) applied the mean-shift
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model to a linear model. The variance-inflation model is that an observation
y; be from N(u,b;0%) where the observation, y;, with & >> 1, is treated as an
outlier (Box and Tiao, 1968). Sharples(1990) showed how variance inflation can
be incorporated easily into general hierarchical models, retaining tractability of
analysis.

In this paper, we use the mean-shift model in linear regression model. Specif-
ically, we assume that for some particular (n x p) matrix X of constants(or design
matrix), it is intended to generate data Y = (Y7,---,Y,)?, such that

Y =X0+e (1.1)

where 3 = (61,---,0Bp)! is a set of p unknown regression parameters, and where
the (n x 1) error vector ¢ is normally distributed with mean 0 and variance-
covariance matrix ¢?I,, where ¢? is unknown. Despite the fact that (1.1) is
intended generation scheme, it is feared that departures from this model will

occur, indeed that the observations y may be generated as follows; fori = 1,---,n,
Py

Y; = Emijﬁj + m; + €. (1.2)
j=1

Therefore if m; = 0, then ith observation is not an outlier. Otherwise, it is consid-
ered as an outlier. For detecting outliers, we use SSVS(stochastic search variable
selection) method in George and McCulloch(1993). The SSVS was introduced as
the method for selecting the best predictors in multiple regression model using
Gibbs sampler. In general likelihood approaches, we find one outlier which is
most suspicious and next the pair and the triple of outliers, and so on. Then we
can not compare the one most outlier with a pair of most outliers and there exits
sometimes masking. But our Bayesian method overcomes such problems. In this
procedure, the most great advantage is that we can find the set of outliers which
is most suspecious among the data.

The plan of this article is as follows. In section 2, in order to find the outliers,
we introduce and motivate the hierarchical framework that depends on the SSVS
in George and McCulloch(1993). In section 3, we illustrate our proposed method
on a simulated example and a real data set (Darwin’s data: Box and Tiao, 1973).
Finally, in Section 4, we extend our proposed method to normal linear mixed
model.
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2. HIERARCHICAL BAYESTAN FORMULATION

2.1. SS8VS For Outliers

For detecting outliers in linear regression model, we apply the mean-shift
model to linear regression model. Despite the fact that (1.1) is intended genera-
tion scheme, it is feared that departures from this model will occur, indeed that

the observations y may be generated as follows; for i = 1,.--,n,
P
Ui = Z zi; 05 +m; + €. (2.1)
j=1

Therefore our model is reexpressed as follows;
Y =XB+e¢ (2.2)

where X = [X, I,] and 8= (B1,, Bpyma, -~ ,my)t and I, denotes the n x n
identity matrix.

By introducing the latent variable ; = 0 or 1, we represent our normal
mixture by

mj | vj ~ (L= 1)N(0,73) + v N (0, c577) (2.3)

and
Pr(y; =1)=1— Pr(y; = 0) = p;. (2.4)

This is based on the data augmentation idea of Tanner and Wong(1987). George
and McCulloch(1993) use the same structure (2.3) and (2.4) for selecting variables
in linear regression model. Diebolt and Robert(1994) have also successfully used
this approach for selecting the number of components in the mixture distribution.

When v; = 0, m; ~ N(0,7?), and when v; = 1, m; ~ N(0,c?7?). Following
George and McCulloch(1993), first, we set 7;(> 0)small so that if v; = 0, then
m; would probably be so small that it could be "safely” estimated by 0. Second,
we set ¢; large (¢; > 1 always) so that if ; = 1 then a non-zero estimate of m;
means that the corresponding data y; should probably be an outlier in the given
model.

To obtain (2.3) as the prior for m; | v;, we use a multivariate normal prior

m |y ~ Ni(0, DyRD,), (2.5)
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where m = (may,---,mn), v = (71, - *,7), B is the prior correlation matrix, and
D., = diaglaim, ..., ar7s] (2.6)

with a; =1ifv; = 0 and a; = ¢; if 7; = 1. For selecting the values of tunning fac-
tors ¢; and 7;, see George and McCulloch(1993) and section 2.2. Also see George
and McCulloch(1993) for selection of R. As a particular interest, the identity
matrix can be used for E. The choice of f(v) should incorporate any available
prior information about which subsets of y1, - - -, y, should be outliers in the given
model. Although this may seem difficult with 2" possible choices, especially with
large n, symmetry considerations may simplify this work. For example, a reason-
able choice might have the +’s independent with marginal distributions (2.4), so
that

feripnopa) = I8 (1 - p)" 7, (2.7)

Although (2.7) implies that the outlier of y; is independent on the outlier of y;
for all 7 # j, we found it to work well in the various situations. The uniform or
indifference prior f(y) = 27" is the special case of (2.7) where each y; has an
equal chance to be an outlier.

Also, it is assumed that the prior of 8 = (81, --,5,) is normal distribution
with mean vector g = (u1, -, up) and variance-covariance matrix $~L. That is,

B~ N(p,x™). (2.8)

Finally, we use the inverse gamma conjugate prior
o |7~ 16(%, ”'fT)"Y). (2.9)
In this procedure, our main concern for embedding the normal linear model
(1.2) into the hierarchical mixture model is to obtain the marginal posterior
distribution f(vy|Y) o< f(Y | v)f(v), which contains the information relevant to
outliers. As mentioned as before, f(+y) may be interpretated as the statistician’s
prior probability that the y;’s corresponding to an non-zero components of ~y
should be outliers in the given model. The posterior density f(v | Y) updates
the prior probabilities on each of the 2™ possible values of v. Identifying each ~
with a subset of data via that y; = 1 is equivalent to that y; is an outlier, those v
with higer posterior probability f(y | Y') identify the subset of data which is most
suspicious by data and the statistician’s prior information. Therefore, f(vy [Y)
provides a ranking that can be used to select a subset of the most suspicious data.
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2.2. Choice of ¢; and 7;

As an idea discussed in George and McCulloch(1993), the choice of ¢; and
7; should be based on two considerations. First, the choice determines a neigh-
borhood of 0 where SSVS treats m; as equivalent to zero. This neighborhood is
obtained as (—d;,d;), where —d; and ¢; are the intersection points of the den-
sities N(O,Tf) and N(O,C?sz). Because (—d;,0;) is the interval where N(0, 'r]z)
dominates NV (D,c?'rjz), the posterior probability of v; = 0 is more likely to be
large when mj is in (—d;,d;). Thus SSVS entails estimating m; by 0, according
to whether m; is in (—§;,4d;). Second, the choice determines how different the
two densities are. If N(0,77) is too peaked or N(0,c}7?) is too spread out, the
Gibbs sampler may converge too slowly when the data are not very informative.

Our recommentation is to first choose §;. This may be obtained by practical
considerations such as setting J; equal to the largest value of | m; | for which
a plausible change in y; would make no practical difference. Once §; has been
chosen, we recommand choosing c; between 10 and 100. This range for ¢; seems
to provide seperation between N (0, 7"]2) and N(0, cjz-rjz) which is large enough to
yield a useful posterior and small enough to avoid Gibbs sampling convergence
problems. When such prior information is available, we also recommand choosing
c; so that N (O,C_?sz) give reasonable probability to all plausible values of m;.
Finally, 7; is obtained from d; and ¢; by 7; = [2Zog(c_7-)c§/(cj — 1)]_%53-. Note that
for ¢; = 10,6; = 2.157; and for ¢; = 100, 6; = 3.04r;. For selecting the regression
parameters in linear model, a similar semiautomatic strategy for selecting 7; and
¢; based on statistical significance is described in George and McCulloch(1993).

2.3. Full Conditional Distributions

Densities are denoted generically by brackets, so joint, conditional, and margi-
nal forms, for example, appear as [X,Y],[X | Y] and [X], respectively. The joint
posterior density of 8,m,,0? given y1,- - -, ¥n is given by

1
(2m)3 | 21 |2

exp{~(6 — 1)'S(6 - )

[;6: m, 770-2 | Yi, - ,yn] exp{_%(y - X’B)tg—2(y - X/é)}

X

(27) | £-1 |2
X 1 exp{ 1m’:(D RD,) 'm}
n 1 2 A
(2m)% | D,RD, |3 27
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A
(VyAy/2)2 1v exp{_VW)"r
I‘(V—Y/Q) (0_2)—2'1+1 202

n
X sz-i(l — pi)l_'y". (2.10)
i=1
In order to Gibbs sampler, the full conditional distributions are needed as follows;

[B1m,v,0% 1, yn] exp{—%(a‘%tfftf{é# 202G XY + 8186 - 26T p)},
(2.11)

1, osioros o —omo _
[ml5,’)’,0’2,:[]1,--',yn]OCGXp{—E(O' 2ﬁtXtXﬁ_20- 2/3tXtY+mt(D']’RD7) lm)}:

(2.12)
and

n+V, [Y —XB2+V,\,

2 . —_—
[U |/B’ma71yla 7y1'1] IG( 2 7 2 )

(2.13)

Finally, the vector + is obtained componentwise by sampling consecutively from
the conditional distribution

Vi~ [71. | Yi,- - 7yn)/37m70-21fy(—i)] = [72 | mao—27’Y(—i)] (214)

where «y_j) = (y1," ", %i-1,%+1, " *»n)- The last equality in (2.14) holds be-
cause the independency of (2.14) on Y results from the hierarchical structure
where -y affects Y only through m and 8 is independent of 4 by the agsumption

above. Since [m, ¥i,¥(—s), %] = [m | 7, Y(a), 710 | v v—o)l v V-]

[mv T =1, B{EHE 02]
Skeolm, v = k,¥(—4), 0]
a

— 2.
a+b (2.15)

[FYi:l I yl:"'aynaﬂam’oj?’)/(_i)] =

where a = [m | v = 1,v(w), %[0 | % = L,ypllv = Lygland b= [m | v =
0,7(_i),cr2][cr2 | v = 0,v-ill¥ = 0, Note that under the prior (2.7) on
+ and when the prior parameters for o2 in (2.9) are constant, then (3.6) can be
obtained more simply by

a=[m|y="Lyplpi, b=[m|v=0y_ypl(1—-p) (2.16)
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3. ILLUSTRATIVE EXAMPLES

3.1. Simulate data

In this section we illustrate the performance of SSVS on simulated examples.
We consider the simple linear regression model, that is,

yi=Po+bizit+e, i=1---n (3.1)

with n = 10 and let m; = 0 for ¢ # 7 and m7 = 10. z; ~ N(0,1), ¢, ~ N(0,1) for
i=1,---,10 and (Bo,B1) = (0.5,1). Therefore since m7 = 10, we assume that
observation 7 is an outlier in this data set. For the notational convenience, let

_ Xyt 02(poo11 + pro12) — 1 (E i + olora) — 3 my

HBo

n+ o211
and
_ Yziyi + o (oo + o) — Bo(X 2 + o?oie) — T maa
o = S x; + o200
Then
[60 I;Blam977027y11"')yn] ZN(/-L,Bovo-z) (32)
and
[,Bl | ﬁO:mv'-Yvoj’yla"':yn] :N(Mﬁlsgz)' (33)
Fori=1,---,n,
1
2 _
[m | 50,[3177’”(_1'),%0 ) PR 7yn] = N(pm,, m (3.4)
where fm, = fﬂr—;%fgl)—f‘g
n [Y — XB?
(0% B,m,vogn, - = 165, 2P0 (35
and
9 a
- e A= 3.6
[F)'z 1 I Y1, 7yn’ﬂ7m:0 17(—2)] a+tb ( )

where a = [m | i = 1,y—y]pi, b = [m | v = 0, v—y](1 - pi).
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Table 3.1:

outlier numbers observation proportion
0 0.26
0.01
0.01
0.01
0.01
0.36
10 0.05
1, 7 0.01
2, 7 0.01
4, 7 0.01
5, 7
7, 9

-~ & i W o

0.01
0.01
7, 10 0.03
9, 10 0.01
5 0.01

7 0.01
, 6, 10 0.01

8, 9 0.01

We applied SSVS to our model with the indifference prior f(v) = (3)°. = =
= T = 0.25,61 = . = C1p = 10, R = I, and vy = 0. In Table 3.1,
observation 7 is considered as outlier since its correponding posterior probability
is 0.36 which is highest among all data. Also, we may consider that there is no
outliers in data set since its posterior probability is second highest.

3.2. Darwin’s Data

Consider the analysis of Darwin’s data on the difference in heights of self- and
cross-fertilized plants quoted by Box and Tiao(1973, p153). The data consists
of measurements on 15 pairs of plants. Each pair contained a self-fertilized and
cross-fertilized plant grown in the same pot and from the same seed. Arranged
for convenience in order of magnitude, the n=15 observations (on differences in
in heights in eighths of an inch of self-fertilized and cross-fertilized plants) are:
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-67, -48, 6, 8, 14, 16, 23, 24, 28, 29, 41, 49, 56, 60, 75. Guttman, Dutter and
Freeman(1978) re-examine the Darwin’s data to detect outlier(s) using Bayesian
approach with the model as follows;

Y=081+e¢ e~ N(0,0°I,) (3.7)

where 1 = (1,...,1).. Guttman et al(1978) mentioned that observations 1 and
2, having values -67 and -48, are identified as spurious observations since they
have the highest posterior probability. Table 3.2 shows that observations 1 and
2, having values -67 and -48 respectively, are considered as outliers since they
have the highest posterior probability 0.57. Also, observations 1, 2 and 7 may be
considered as outliers.

Table 3.2:
outlier numbers observation proportion

0 0.00
1 0.00
2 1, 2 0.57
3 1, 2,7 0.38

1, 2, 8 0.01
4 1,2, 7 8 0.04

4. EXTENSION TO LINEAR MIXED NORMAL MODEL

In this section, we use the mean-shift model in linear mixed model. Specifi-
cally, we assume that for some particular (n x p) matrix X and (n x!) matrix Z of
constants(or design matrices), it is intended to generate data ¥ = (¥3,---,Y3,)Y,
such that

Y = XB+Zb+e (4.1)

where 8 = (f1,--+,0p)t and b = (b1,...,b;). And we assume that the (n x 1)
error vector € is normally distributed with mean 0 and variance-covariance matrix

oI, where o2

is unknown and the (I x 1) vector b is assumed to be normal with
zero mean vector and the variance-covariance matrix o2I;. Also the independency

of b and ¢ are assumed. For detecting the outliers, we consider that observations
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y may be generated as follows; for i = 1,---,n,
P l
Yi = Z Lvijﬁj + Z zijbj + m; + €;. (4.2)
j=1 j=1
Therefore if m; = 0, then ith observation is not an utlier. Otherwise, it is

considered as an outlier. For detecting outliers, we use SSVS(stochstic search
variable selection) method in section 2.
Therefore our model is reexpressed as follows;

Y =XB+Zb+e (4.3)

where X = [X, I,) and 8= (B1, -+, Bp,m1,---,my)" and I, denotes the n x n
identity matrix.
As before, we use all forms in (2.3) - (2.7) into our model in (4.3). Also, it

is assumed that the prior of 8 = (81, --,0Bp) is normal distribution with mean
vector u = (1, - -, fip) and variance-covariance matrix ¥~ That is,
B~ N, o). (44)

Finally, we use the inverse gamma conjugate prior

) oh~ IG(, ), (45)

Uy Ay
2

2 —~ _l
|7~ 1G(5

4.1, Full Conditional Densities

The joint posterior density of 8,b,m,~,0? given y1,- -,y is given by

[57b1ma7’0—270—§ 1 yl""»yn]
1

x (02)" ex p{—— (Y — X3 — Zb)H(Y — X3 — Zb)}
X n (8- u)2(8 -

i exp{ 2(6 p)E(B —p)}
X ! exp{—lmt(D RD.,) " 'm}

(2m)% | D4RD, 1% T

Vo

* (crz)%Jr1 eXp{_de} Y O\ oy 2 }

bt
X sz’ - 1 Y x (o g 2exp{——b (4.6)
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In order to Gibbs sampler, the full conditional distributions are needed as follows;

[IB I b: m77’025y17"'7yn] (47)
o exp{—%(ﬁutftfﬁu — 28t XtY + 281Xt Zb) — %(ﬂtzﬁ —28' %)},

[b ] 67m7770270§:y1a"'3yn] (48)

1 o
5 eXp{—@[oﬁ(—Wth + 23 X Zb + b 2 Zb) + a*b'b)},

[TTL I ﬁ:b’Vsazaaguyls"'vyn] (49)
1 - - s 1
x exp{—ﬁ(y - X6 -2b)(Y - X3 - Zb) — §mt(D,,RD,,)—1m},
[+V, |Y — XB— Zb2 + Vo
[02]Bab,m,ff%,%yl,“‘,yn]:IG( ‘+:.2 ba‘ ‘B 9 I * . 7)9 (410)
and

n+V, b+ Vb/\b)
2 2 .
Finally, the vector «y is defined in (2.15) and (2.16).

[O-l? |57b1m702’7’y17"'1yn]:IG( (411)

4.2, Generated data

In this section we illustrate the performance of SSVS on simulated example.
We consider the simple linear mixed normal model, that is,

vi = Bo + Pz + bz Hbozinte, i=1,---,n (4.12)

with n = 10, z;, 251, zi2 ~ N(0,1), ¢ ~ N(0,1) for s = 1,---,10 and (8o, 51) =
(0.5,1) and b; ~ N(0,1) for 7 = 1,2. And let m7 = 10 and m; = 0 for 1 #
7. Therefore we assume that observation 7 is outlier in this data set. For the
notational convenience, let

HBo

_ Xyt o?(poo11 + p1o12) — Bi(X @i + 02012) — by Sz — b Yoz — omy
n+ ooy ’

g = o (pooa1 + p1oa2) — Bo(X zi + 0%012) — S(brziziy + bawiziz + muzi — 2y
A E :1712 -+ (720'22 '
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_ 0 Ylyiza — (Bo + rmi + mi)zin — bazia 2ia]

Ho, = o2 Y 2% + o2 ’
and
_0f Ylyizia — (Bo + Przi + ma)ziz — bizir zia)]
Hoy = o2 2% + o2 '
Then
2 o’
b7 1 1 I =N ) ?
[Bo | Br,b,m,y, 0% 1 Yn (184 n+ 0?0y,
2 o’
[;51 |;50) y M, 7Y, 0, 41, 7yn] ('u‘ﬁli Z‘,L.ZQ +O’20'22 ?
2 2
2 . a Ub
[b]. | b21/@3m7770 7y1)”"y7’1] - N(;u‘blﬂo_gzzzzl +o_2)7
and
2.2
2 _ g9
[b2 ' b1313§m37,0- :yla"'vyn] _N(:U'bwo_gzzz% +O’2).
Fori=1,---,n,
9 1
[mi |501517m(—i)7770— 2 YL, 1yn] = N(IJ‘mi’ o2 4+ (a'T')_2)
where pm, = {2 Fa_,-nl)ft .
n |Y — XB|?
[02|/33m7’7=y11"'7yn]=IG(§7 9 )
and
b = 19y Yo By, 0%, )] = —
i ) y Yns 2 T O Y (—4) a+b

(4.13)

(4.14)

(4.15)

(4.16)

(4.17)

(4.18)

(4.19)

where a = [m | v = 1,v_ylpi, b = [m | 7 = 0,vy}(1 — p;). We applied SSVS

to our model with the indifference prior f(v) = (3)*

T = - =T10=0.25,Cl =

- =¢190 =10, R = I, and v, = 0 and v = 0. Table 4.1 shows that observation 7
is considered as an outlier since its proportion (which is an approximate posterior

probability) is highest. Also, it may be assumed that there are no outliers.



Bayesian Qutlier Detection in Regression Model

Table 4.1:

outlier numbers

observation proportion

0

00 =~ Oy = bo

0.23
0.09
0.03
0.01
0.35
0.07
0.01
0.01
0.06
0.01
0.02
0.02
0.01
0.02
0.01
0.01
0.01
0.01
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