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A BAYESIAN ANALYSIS FOR PRODUCT OF POWERS
OF POISSON RATES

HeA-Jung Kim !

ABSTRACT

A Bayesian analysis for the product of different powers of k independent
Poisson rates, written 8, is developed. This is done by considering a prior
for # that satisfies the differential equation due to Tibshirani and induces a
proper posterior distribution. The Gibbs sampling procedure utilizing the
rejection method is suggested for the posterior inference of 8. The procedure
is straightforward to specify distributionally and to implement computation-
ally, with output readily adapted for required inference summaries. A salient
feature of the procedure is that it provides a unified method for inferencing
# with any type of powers, and hence it solves all the existing problems
(in inferencing 6) simultaneously in a completely satisfactory way, at least
within the Bayesian framework. In two examples, practical applications of
the procedure is described.

AMS 2000 subject classifications. Primary 62F15; Secondary 62F25.
Keywords. Bayesian analysis, Product of powers of Poisson rates, Tibshirani’s differential
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1. INTRODUCTION

Suppose that X; ~ P,(\;), for ¢ = 1,...,k are independent Poisson random
variables with parameter A;. The parameter of interest is 6 = Hle A%, the prod-
uct of different powers of k Poisson rates. The estimate of @ has been applied in
many statistical problems. An example is in the assessment of casualties due to
traffic accidents. Assume that the casualties per accident, number of accidents
per. day, and number of days per week during which traffic accident is occurred
are three independent Poisson random variables. The total casualties in a week is
the product of three Poisson rates. When «; = 1/k for all 4, estimating 6 can be
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recognized as the geometric mean of Poisson rates that arises in environmental
applications (Environmental Protection Agency, 1986) and in economic applica-
tions (Kenneth et al., 1998). For o; = 1 and ay = —1 for ¢ = 1,...,k; and
iV =ki+1,...,k, 8 can be viewed as a quotient of the Poisson rates that arises
in the problem of exponential series system availability (Martz and Waller 1982).
A couple of literatures are concerned with mathematical devices for the inference
of 8, Harris (1971) and Harris and Soms (1973) derived conditional distributions
that depends only on the quotient and the powers of poisson rates, respectively.
Based on the distributions they suggested procedures for testing and obtaining
confidence intervals for 6.

Even though results of the preceding literatures are concerned with mathe-
matical devices for the inference of 8, each of them is confined to the case where
{a;;i = 1,...,k} has a special set of integer values. Furthermore, the mathe-
matical devices are not unified so that they vary according to integer values of
a;. A second problem of the results arises from the discreteness of the distribu-
tions involved in the mathematical devices. For any confidence level 1 — v, it is
only possible to give intervals with probability of coverage exactly equal to 1 —
by artificial randomization (cf., e.g., Lehmann 1959 and Harris and Soms 1973).
A third problem is that the mathematical devices can not be extended to the
case when values of a; are not integer. This fact prevents us from developing
applications involving various types of 6. ‘

It is possible to deal simultaneously with all these problems in a completely
satisfactory way, at least within the Bayesian framework. This article proposes a
unified method for the inference of 6 for any real values of ;. As an alternative
to Jeffreys’ prior, Section 2 develops a noninformative prior for 6 utilizing the
differential equation by Tibshirani (1989) that asymptotically matches posterior
and frequentist probabilities based on an Edgeworth expansion of a function of
likelihood ratio statistic. Section 3 provides the Gibbs sampling procedure for
inference of 0 based on the noninformative prior leading to a proper posterior.
In Section 4 posterior inferences of @ obtained from the prior and the Jeflreys’
prior are compared in terms of frequentist coverage probabilities of the posterior
credible sets. The calculations in both Sections 3 and 4 are made by a Markov
chain Monte Carlo method, which is very successful in handling small to large
k. Section 5 contains two examples which have been selected for the purpose of
motivating the contents of this article.
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2. THE PRIOR

Suppose we observe X;, i = 1,...,k, as independent Poisson variables with
parameter );, the parameter of interest being 6 = [];_; A, the product of dif-
ferent powers of k Poisson rates. Given a parameter vector A = (\1,...,Ag)’, we
seek a noninformative prior mo(A) so that the posterior interval for 6 has asymp-
totically good coverage probabilty in the frequentist sense. Reasons for seeking
this kind of prior is described in Stein (1985) and he derived nonrigorously a suffi-
cient condition for an asymptotically optimal frequentist coverage prior. Through
the use of orthogonal parameters, Tibshirani (1989) gave a differential equation
that yields general form of the class of priors satisfying Stein’s condition. In this
section, as an alternative to the Jeffreys’ prior, we obtain a noninformative prior
of 8 by deriving and solving the Tibshirani’s differential equation.

Let 6 = H X"i and Gi=¢(A) fori=2,...,k and let Cj 0¢i(A)/0A; and

M@ = (/N )H] ~1 ;. The Jacobian matrix of this transformation is
[ na)y 1)+ k) |
G GG
(N)
L G G R

Therefore, the inverse of the expected Fisher information matrix can be written

as
10,6 = (B4) o (424)) - [fﬂ(:m(%i’

where ¢ = (Zle A n(i)cg,...,Zi;l A n(i)(li)’ and A is an (k—1) x (k — 1)
nonsingular matrix. Thus 8 and ¢ are orthogonal if and only if ¢ = 0. This gives

3 (2'1)

k — 1 homogeneous linear partial differential equation of first order. Any smooth
function with form ¢(X\;/a; — Aj/a;, i < j) could be a solution of the equations.
For instance, one could take '
A1 A
G = a—l*é, i=2,...,k (2.2)
as the new transformations. Then 6 and ¢ are orthogonal and its Jacobian matrix
can be written as
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[Ny M) My |
ol —ayt- 0
8(6,0) _
o(X)
_ozl_1 0 ---—a,:l_

and its absolute value of determinant is Zle N()0(i)> where 6¢;) = H#i aj_l. The
Fisher information matrix, by (2.1), is

1-1
FZi‘c:l Ai 77(2i) 0 0
0 A/a?+ Ag/ad - A /a?
1(6,¢) = : (2.3)
] 0 )\1/04% "')\1/0(%-{-)\;0/0%_

Using Tibshirani’s method, a noninformative prior of form

k -1/2
(8, () o 9(C) (Z A n?i)> (2.4)

i=1

will achieve the asymptotic optimal coverage property. Transforming back to the
original parameter space A, we obtain

-1/2

k k
mr(A) o< g(¢(N)) (Z ) 5(1:)> (Z Ai "(21')> o< g(¢(A))
io1 et

where g(((A)) > 0 is arbitrary.
Up to now, we have given a procedure for deriving the prior mp(A) for the

balanced case where sample size from each of k Poisson populations are equal.
Using the same procedure, we may obtain the prior for the unbalanced case where

we observe X;;, i =1,...,k, j=1,...,n; as independent Poisson variates with
mean A;. Upon setting 8 = le A?" with of « /n;o; and applying the same

procedure, we see that the corresponding prior for )\ is exactly the same as (2.5).
Therefore, the noninformative prior (2.5) for the product of powers of Poisson
rates is valid for the unbalanced case as well as the balanced case. The choice
g(¢(N\)) = 1 for (2.5) gives simple form of the prior, which also attains good
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frequentist coverage property compared to the Jeffreys’ prior (see Section 4).
The Jeffreys’ prior for both balanced and unbalanced cases is given by

k -1/2
mr() o [TV /2 = (H /\i> : (2.6)
i=1

where I()) is the information matrix associated with the likelihood function.

3. POSTERIOR ANALYSIS

3.1. Propriety of the Posteriors

Consider a prior distribution defined by

k h ok s
To(A) (HM) (nglo@) L A>0i=1,...,k, (3.1)
=1 =1

for (h =—-1/2,s =0) and (h =0,s = 1/2). When h = —1/2 and s = 0, the prior
is the Jeffreys’ prior in (2.6), and h = 0 and s = 1/2 leads to the noninformative
prior in (2.5) with the choice of g(¢()\)) = 1.

Let {X;;} denote a random sample of size n; from ith population having
distribution X; ~ P,()\;), ¢ = 1,...,k. Then the likelihood function of A can be
expressed by

k g
L(\|data) 1—[/\:;":1 Yexp{-ni\i}, M>0;i=1,... k. (3.2)

=1

Therefore, using the prior from (3.1), the posterior distribution of A is given by

k h k  k ng
w(A|data) (H )\1-) <Z )\flaf) H)\iZjZIx” exp{—nAi}, A\ >0i=1,...,k
i=1 i=1 i=1

(3.3)

1. The density in (3.3) with h = 0 and s = 1/2 is always integrable over
C={\: \;>0,i=1,...,k}, because

k k
—- —-1/2
Soated) 2 < SN 20
=1 i=1
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2. When h = —1/2 and s = 0, (3.3) is a kernel of product of k¥ gamma densities,
and hence is integrable over the range C = {A: \; > 0;i=1,...,k}.

Therefore, the prior (3.3) yields proper posteriors, i.e. both noninformative prior
and the Jeffreys’ prior yield proper posteriors.

3.2. The Gibbs Sampling to Evaluate the Marginal Posterior Distribution of 6

In this section the informative prior and the uniform prior for 6 are con-
sidered and the marginal posterior distribution is evaluated by Gibbs sampling
simulation (Gelfand and Smith 1990). By the likelihood (3.3) and the prior of
form (3.2), the conditional posterior distribution of A; given A_; where A_; =
(/\1, e ;)\i—l, /\i+1, ey )\k)', is given by

1

k s ny L.
(Al A=s, data) o< A} (Z )\i_la?) AZ3=1 % exp{-ni\}, Ai>00=1,... k.

i=1

(3.4)

For the noninformative prior with h =0, and s = 1/2, (3.4) becomes
1/2
w(Ai|A=i,data) o< [ 1+ )\i_la?/z}\j_la? A?izlzij exp{—-n;\i}, A >0,
J#i

(3.5)

whereas for the uniform prior, in which h = —1/2, and s = 0, (3.4) is a gamma
distribution of the density

r(Milhs data) o< A= " T  explonini}, N> Oi=1,....k  (3.6)

and hence it is straightforward to obtain a Gibbs sample from (3.6). To simulate
random variates with densities (3.5), however, a rejection method is needed. The
rejection method used in computations are described as follows.

[Simulation of X with Density f(z) o (1 +n/z)Y/?z"¢7% for z > 0 and
h > 0]

Step 1. Generate z from a gamma distribution, Gamma(v+1/2,1/(a—1/2)), where
the mean of the distribution is (v+1/2)/(a—1/2). If uyra?~1/2e~(a-1/2)z <
(1 + v/n/x)x"e %%, then accept r, where u; is a U(0,1) variate, T = (1 +
' [y eV [{y? e Y, and y = {—n'/2 + (n+ 9)!/?}/2.
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Step 2. Simulate uy from U(0,1). If ug < (1 + h/x)Y2/(1 + /h/x) for z being
derived from Step 1, then accept .

Step 2 involves using a rejection method to generate a variate from g(z) o (1 +
Vh/x)z"e % for z > 0. The maximum of the ratio f(z)/g(z) when z € (0, 00)
is the ratio of the normalization constants of the two densities. Therefore, when
a U(0,1) random number us < f(z)/g(z), where z is from g(z), then we accept
z.

For the part of Step 1, let gi(z) o« z¥~Y/2e~(@~1/2 Then g(z)/g1(z) o
(vZ + Vh)e~%/2, and the maximum of g(x)/g1(z) is proportional to 7 defined in
Step 1. Here all the proportions mean that we are only ignoring the ratio of the
normalization constants between the two density functions g(z) and g;(x). The
algorithm follows the regular rejection method after the maximum of g(z)/g:(x)
has been determined.

Once we obtain a Gibbs sample {A\(™ = (/\gm),...,)\,(cm))’,m =1,...,M},
let O = [T, (A™) for m = 1,..., M. Also let 8, denote ordered value of
6™, Then the yth quantile of the marginal posterior distribution of 8 can be
estimated by

A 0y if y=0
(M = (1)
0 {a(m)’tf m—1<’ySm' ' (37)

Using (3.7), we compute
Rj(M) = (é(j/M)’g‘(H[l—v]M)/M)), (3.8)

and a 100(1 — v)% HPD interval of 8 is R;-(M) that has the smallest interval
width among all R;j(M)’s. It is known that, as M — oo, Rj«(M) converges to
true HPD interval of # when the posterior density of 8 is unimodal (see, Theorem
7.3.2 in Chen, Shao, and Ibrahim 2000).

4. FREQUENTIST COVERAGE PROBABILITY

An appropriate noninformative prior should have good frequentist properties.
Many authors (Datta and Ghosh 1996; Datta, Ghosh and Mukerjee 2000; Muk-
erjee and Reid 1999; Stein 1985; Ye and Berger 1991 among others) suggested
and argued those properties. One of them is that the frequentist coverage prob-
ability of a (1 — y)th posterior quantile should be close to (1 — «). Using the
Gibbs sampling method in Section 3, we investigate the property numerically
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. TABLE 4.1 Frequentist Coverage Probabilities for .05(.95) Posterior Quantiles of  for the

Balanced Case

k=3

oo (LL,1) 0 (1,23 (1,510 (2,22 (555 (10, 10, 10)
mr .072(.984) .065(.976) .054(.961) .047(.938) .053(.947)  .052(.951)
my  .145(.996) .122(.987) .041(.983) .038(.916) .025(.928)  .040(.938)

k=8
oo (1,2,3,4,56,7,8  (1,23,4,555,5) (5,5,5,5,5,5,5,5)
T .041(.971) .043(.967) .056(.962)
™ .011(.977) .014(.962) .019(.901)
X (5,555678,9 (55,5,5,10,10,10,10) (10, 10, 10, 10, 10, 10, 10, 10)
T 053(.958) .047(.954) .049(.952)
™ .022(.907) .023(.910) .028(.919)

for the priors 77 and 7. The computation of the frequentist coverage proba-

bility

of a (1 — #)th posterior quantile of 4 is based on the following algorithm

for any fixed true A\g = (M10, ..., Ax0) and any predetermined probability value ~.

[Algorithm for Calculating the Frequentist Coverage Probability]

Step 1.

Step 2.

Step 3.

Given a fixed true A\g = (A1g, ..., Ago)’, simulate random sample {z;;} of
size n; independently from P, (o) distributions, i = 1,...,%.

Using the Gibbs sampler given in Section 3.2, simulate a posterior random
vector A| X, X = [{z1;},..., {zx;}], discarding the first 1,000 samples to
‘burn-in’ the sampler. For the balanced case (ie. n; = -+ = ng = n),
repeat the simulation m; times and calculate the proportion p for which
6 = le At < 6o, where 0y = Hle A3 . Note that, for the unbalanced
case, o; in 6 and 6y needs to be replaced by o}, where o o \/n;a.

Repeat Step 1 and Step 2 my times, and compute the proportion é of p < v
in these replications.

The quantity p is the estimate of the marginal posterior probability of 8 for
the interval (0,60p). On the other hand § is the estimated frequentist coverage
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TABLE 4.2 Fregquentist Coverage Probabilities for .05(.95)th Posterior Quantiles of 8 for the
Unbalanced Case

k=3

o (1,1,1) 0 (1,2,3)  (1,510) (2,22 (555 (10,10, 10)
mr .052(.978) .052(.979) .054(.949) .051(.950) .051(.947)  .049(.945)
my .022(.901) .026(.914) .028(.899) .028(.900) .031(.908)  .032(.913)

k=8

X (1,2,3,4,56,7,8 (1,2 3,4,5,5,5,5) (5,5, 5,5,5,5,5,5)
mr 049(.971) .053(.970) .048(.944)

™ .015(.857) .014(.854) .016(.850)

o (55556789 (555,510, 10,10, 10) (10, 10, 10, 10, 10, 10, 10, 10)
7o 053(.950) .049(.949) 052(.949)
T .018(.866) .020(.864) 025(.891)

probability of the «yth posterior quantile. The algorithm is applied to a balanced
case with n; =1 and oy = 1/k for all i = 1,..., k. Table 4.1 shows the estimated
frequentist coverage probabilities of v = .05(.95) posterior quantiles for different
values of A\¢’s and k obtained by using nr and 7. For the calculations of the
entries in the table, m; is 10,000 and msy is 10,000. The maximum standard
errors of estimations p and & are .0035 and .005 respectively. From Table 4.1,
clearly the noninformative prior 7 is better than the Jeffreys’ prior 7y in most
of the situations. Therefore, the noninformative prior is more appealing. When
each coordinate of \g is large, the frequentist coverage probabilities obtained from
using 7 are almost close to the desired levels. The table also notes that, even
though n; = 1, the frequentist coverage probabilities of 7y are uniformly better
than those for 7; in all the situations.

The algorithm is also applied to an unbalanced case with n; = 224l and
o} = 1 so that a; = 221"~/ according to the relation o o« /m;q; fori=1,...,k.
Table 4.2 shows the estimated frequentist coverage probabilities of v = .05(.95)
posterior quantiles for different values of Ap’s and k.

For the calculations of the entries in the table, we used mi1 = mgy = 10, 000.
The maximum standard errors of estimations p and 6 are .0042 and .006 re-
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spectively. From the table, we see that the frequentist coverage probabilities
obtained from using the noninformative prior mp are almost close to the desired
levels, while those obtained from using 7; underestimates the levels. Further-
more, limited but informative comparison studies using various set of values of
{ni, 0459 = 1,...,k} and {n;,0f;% = 1,....k} revealed the same phenomena of
Table 4.1 and Table 4.2, respectively. These results are not listed in tables for
the sake of saving spaces. Therefore, for both balanced and unbalanced cases,
the prior 7 satisfying the Tibshirani’s differential equation is more appealing in
the sense of the frequentist property.

5. ILLUSTRATIVE EXAMPLES

5.1. An Ezample in Environmental Statistics

As stated in Section 1, the estimate of a product of power of Poisson rates has
been applied in many environmental statistical problems. An example is in the as-
sessment of bacterial (Escherichia coli) counts in water due to contamination from
sewage. The assessment is usually based upon the geometric mean of bacterial
rates of samples taken over an observation period (see, information on bacteria
standards in the U.S.;http://www.novaregion.org/4milerun/standards.htm).

In this example, estimating the geometric mean of bacterial rates is consid-
ered. Especially, the HPD interval for the geometric mean is estimated by the
suggested Bayesian procedure. For this, the procedure is applied to Escherichia
coli data set (year 2002) obtained from Cedar river down stream of Waterloo in
Iowa State. The data is available from the IASTORET data base of University
of Towa ( http://wqm.igsb.uiowa.edu/iastoret).

This example highlights the utility of the suggested Bayesian procedure in
the following reasons: (i) Since the observations include zero count on Feb. 7,
usual sample estimate of the geometric mean (the sample geometric mean of the
counts) is not available. (ii) Unlike the methods for estimating integer powers
of the Poisson rates in Harris (1971) and Harris and Som (1973), a frequentist
approach for estimating a non-integer powers of the Poisson rates (such as the
geometric mean of

the Poisson rates) has not been seen in literatures yet. To sample A =
(A1,...,A12)" from the required posterior distributions, we use the suggested
Gibbs sampler in Section 3 with n; = 1, ¢ = 1,...,k. The diagnosics we used
are described in Cowles and Carlin (1996).

For the Gibbs sampling, we used 5,000 iterations to ’burn-in’ the sampler; the
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TABLE 5.1 Escherichia Coli Bacterial Counts Per 100 Milliliter of Water

Obs. Date Jan. 7 Feb. 7 Mar. 6 Apr.3 May. 2 Jun. 6

Bacterial Count 18 0 40 18 70 2200
Obs. Date Jul. 9 Aug. 5 Sep. 9 Oct.3 Nov. 1l Dec. 5

Bacterial Count 40 150 20 400 18 27

decision is base on the trace plots. We took every 20th iterate to obtain a random
sample of M = 1,000 iterates from the joint posterior posterior density. Trace
and estimated marginal posterior density of § = Hzlil /\3 /12 are given in Figure 1.
Figure 1 shows that the density is left-skewed and unimodal, and hence we need
HPD interval for the interval estimation of 8. Based upon the Gibbs sample of
size M, the 95% HPD interval for 6 is obtained from (3.8), the method by Chen
and Shao (1999). The 95% HPD interval using the suggested noninformative
prior is 57.398 < [[:2, A//"? < 104.67462. For the point estimate of 6, we may

use either the posterior mean 82.86127 or the median 84.1397.

5.2. An Application to System Reliability

Despite the fact that the problem of inferencing the parameter § may arise as
a problem of interest in its own right, the inference may be of more interest and
will presumably be applied more often as approximate solutions to the problem
of establishing the reliability of systems of k independent parallel components.
The example is selected for the purpose of illustrating this case.

Let p;, i = 1,...,k be the probability that the ith component fails. Then the
probability that the system fails is ¢ = Hle p;. Assume that n;, @ = 1,...,k
independent Bernoulli trials are made on each component. Then under assump-
tions such that the binomial distribution can be satisfactorily approximated by
the Poisson distribution, Bayesian estimation results in 6 = Hle A; may be
employed to treat the reliability systems of k& independent parallel components
through the relation

k
¥ =0/(]]n). (5.1)
i=1

Using the data listed in Table 2 of in Harris (1971), we give a number of
numerical examples for the probability of failure of independent parallel compo-
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FIGURE 5.1 Trace and Kernel Density Estimate of 6

nents system. Assume that two systems are consists of two and three compo-
nents in parallel, respectively. Then respective probabilities of system failure are
i1 = p1p2 and P9 = p1p2ps, products of two and three binomial parameters. For
confidence intervals of ; and 2, numerical comparisons are provided for Har-
ris’s randomized method (1971), the likelihood ratio method of Madansky (1965)
and the suggested Bayesian procedure. The utility of these comparisons is some-
what limited, since the techniques are all approximate and the exact confidence
coeflicient is not available.

For the Bayesian estimates, we first estimate the marginal posterior density of
@ in order to check the skewness and unimodality of the distribution of 8, and then
posterior quantities are obtained. Since estimated marginal posterior density of
f appears to be unimodal but severely skewed to the left we use the posterior
median for the Bayesian estimate of 8. Three posterior quantities of ¢, and 2,
obtained from the relation (5.1), are presented in Table 5.2. The quantities are
obtained from the same Gibbs sampling method described in Subsection 5.1.
The first is yth quantile The second is the v x 100% HPD interval. The third
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TABLE 5.2 Upper Confidence Limits and the HPD interval for Hle p; with Confidence
Coefficient 1 — v = .9; the Posterior Median is in the Parenthesis

Y1 = p1p2
Sample sizes Observed Madansky’s Harris’s Bayesan HPD
n1, N2 T1, T2 method method (Median) Interval
100, 100 3,5 .00433 .00416 .00406 [000243, .004142)
(.00177)
100, 100 1,4 .00188 .00184 .00172 [.000056, .001721}
(-00054)
100, 100 2,2 .00168 .00170 00157 [.000015, .001583]
’ (.00053)
150, 150 3,3 .00133 .00128 .00124 [.000029, .001255]
(.00049)
Y2 = p1paps
Sample sizes Observed Madansky’s Harris’s Bayesian HPD
ni, N2, N3 T1, T2, T3 method method (Median)
100, 100, 100 1,21 .000019 .000027 .000021 [7.2 x 107%,2.2 x 107°]
(4.9 x 1079)
100, 100, 100 2,3,5 .000133 000145 .000132 [1.7 x 1075,1.4 x 107
(3.4 x107%)

is the posterior median. The table notes that three methods provide quite close
agreement. Even though the Bayesian method tends to give smaller upper limit
for most of the cases, it is small enough to neglect. This fact and the results of
Table 4.1 suggest that the Bayesian method can be an alternative method for
estimating the system reliability.
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