• Title/Summary/Keyword: Gibberellin ($GA_3$)

Search Result 106, Processing Time 0.038 seconds

Effect of Heavy Metal Resistant and Halotolerant Rhizobacterium Bacillus safensis KJW143 on Soybean under Salinty and Cadmium Exposure

  • Eun-Hae Kwon;Ho-Jun Gam;Yosep Kang;Jin-Ryeol Jeon;Ji-In Woo;Sang-Mo Kang;In-Jung Lee
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2023.04a
    • /
    • pp.32-32
    • /
    • 2023
  • Cadmium and salt exposure to crops is considered vulnerable for production as well as consumption. To address these challenges, the current study aimed to mitigate the toxicity induced by salt and cadmium in soybean plants through the application of bacterial strain Bacillus safensis KJW143 isolated from the rhizosphere of oriental melon..The bioassay analysis revealed that KJW143 is a highly salt-tolerant and cadmium-resistant (Cd) strain with an innate ability to produce melatonin, gibberellin (GA3), Indole-3-Acetic Acid (IAA), and organic acids (i.e., acetic, succinic, lactic, and propionic acids). Soybean plants at 20 days old were treated with KJW143 in a different form (pellet, broth, and together) and their effect on plant performance was investigated. Inoculation with KJW143enhanced plant biomass and growth attributes in soybean plants compared to the control (non-treated). In particular, we observed that only pellet-treated showed 65%, 27.5%, and 28.7% increase in growth (shoot fresh weight) compared to broth, broth with pellet, and control. In addition, bacterial strain KJW143 treatment (only pellet) modulated the physiochemical apparatus of soybean plants by increasing glucose (390%), arabinose (166%), citric acid (22.98%) and reducing hydrogen peroxide (29.7%), catalase (32.1%), salicylic acid (25.6%) compared to plants with combined stressed plants (cd and salinity). These findings suggest that bacterial strain KJW143 could be usedas a biofertilizer to minimize the probable risk of heavy metal and salinity stress on crops.

  • PDF

Investigation of Cultural Environment and Effect of Plant Growth Regulator on Japanese cornel dogwood (Macrocarpium officinale NAKAI) (산수유(山茱萸) 주산지(主産地) 환경(環境) 조사(調査) 및 생장조정제(生長調整劑) 처리(處理) 결과(效果))

  • Park, Gyu-Cheol;Park, In-Jin;Lee, Woon-Jik;Park, Tae-Dong
    • Korean Journal of Medicinal Crop Science
    • /
    • v.2 no.1
    • /
    • pp.1-6
    • /
    • 1994
  • These studies were carried out to investigated effect of cultural environment and of plant growth regulator on Macrocarpium officinale NAKAI. The flowering and fruitage were significantly different with location of cultivated area. Generally, suitable cultivation area was the basin of the mountains of 200-400m above the sea. The diurnal temperature change of GURYE was greater than KWANGSAN. The soil conditions of main cultivation area were sandy loam of slightly acid (pH 6.2-6.6). Dry fruit weight without seed of Macrocarpium officinale NAKAl was increased 18% in primary treatment of Gibberellin W.P (200g/10a) 15days before and secondary GA3 50ppm(6g /10a) 15 days after flowering compared with the control.

  • PDF

Interactions between Indole-3-acetic Acid Producing Acinetobacter sp. SW5 and Growth of Tomato Plant (Indole-3-acetic acid를 생성하는 Acinetobacter sp. SW5와 토마토 식물 간의 상호작용)

  • Kwon, Hyeok-Do;Song, Hong-Gyu
    • Korean Journal of Microbiology
    • /
    • v.50 no.4
    • /
    • pp.302-307
    • /
    • 2014
  • Many rhizobacteria can promote plant growth through various direct or indirect mechanisms, and their production of phytohormones such as indole-3-acetic acid (IAA) may have pronounced effects on growth and development of plants. Rhizobacterial strain isolated from rhizosphere of foxtail (Setaria viridis), Acinetobacter sp. SW5 produced 118.1 mg/L of IAA and 4.5 mg/L of gibberellin ($GA_3$) in brain heart broth medium at 2 and 1 day of incubation, respectively. In a pot test the lengths of stem and root and fresh weight of the germinated tomato seedlings treated with Acinetobacter sp. SW5 significantly increased by 26.3, 33.3, and 105.3%, respectively compared to those of the uninoculated control in 12 weeks of cultivation. When the root exudate secreted from tomato seedlings was analyzed by HPLC, 3.75 ng mg tomato $root^{-1}$ of tryptophan which is an IAA precursor was detected. Acinetobacter sp. SW5 could produce $4.06{\mu}M$ of IAA from root exudate from 8 tomato seedlings. Together with the capability of growth of Acinetobacter sp. SW5 in the tomato root exudates, this IAA secreted by bacteria might contribute to enhance the growth of tomato plants.

Effects of Overexpression of Brassica rapa GROWTH-REGULATING FACTOR Genes on B. napus Organ Size (배추 GROWTH-REGULATING FACTOR 유전자 발현이 유채 기관크기에 미치는 영향)

  • Hong, Joon Ki;Suh, Eun Jung;Lee, Seung-Bum;Yoon, Hye-Jin;Lee, Yeon-Hee
    • Korean Journal of Breeding Science
    • /
    • v.50 no.4
    • /
    • pp.378-386
    • /
    • 2018
  • GROWTH-REGULATING FACTOR (GRF) genes encode plant-specific transcription factors and play critical roles in regulating the growth and development of lateral organs. In order to explore the agricultural potential of Brassica rapa GRF genes (BrGRFs), we constructed two BrGRF-overexpressing B. napus plants (BrGRF3-1OX and -9OX). BrGRF3-1OX and -9OX developed larger cotyledons, leaves, and seeds than the wild type. The increased organs' sizes were due to increases in cell number, but not due to cell size alterations. RT-PCR analysis revealed that BrGRFs regulated the expression of a wide range of genes that are involved in gibberellin-, auxin-, cell division-related growth processes. Taken together, our data indicate that BrGRFs act as positive regulators of B. napus growth, thus raising the possibility that they may serve as a useful genetic source for crop improvement with respect to organ size and seed production.

Screening for Resistance to Downy Mildew among Major Commercial Cucumber Varieties (주요 오이 품종의 노균병에 대한 저항성 검정)

  • Lee, Jung-Sup;Han, Kyung-Sook;Lee, Seong-Chan;Soh, Jae-Woo
    • Research in Plant Disease
    • /
    • v.19 no.3
    • /
    • pp.188-195
    • /
    • 2013
  • This study was carried out for the downy mildew resistant test between 2010 and 2012. A set of 22 accessions belonging to 2 wild species and 20 varieties of the genus Cucumis, originating mainly from the Asian Vegetable Research and Development Center (AVRDC) Gene Centre, was evaluated for resistance to Pseudoperonospora cubensis, causal agent of cucumber downy mildew. The youngest fully expanded true leaves were found suitable for in vitro screening. Both leaf discs and full leaves could be kept fresh longer when applying 0.2 ${\mu}g/ml$ of gibberellin acid (GA). The incubation temperature of $20^{\circ}C$ was found to be the most suitable temperature for symptom development comparing with 15 and $25^{\circ}C$. Symptom development was faster when contact diseased leaf discs (2 weeks after inoculation) on to fresh leaf samples comparing with using conidia suspension ($10^5$ spores/ml). The numbers of spots in 'C-19' were lower than other varieties. 'C-19' variety was also showed the highest level of downy mildew resistant at $20^{\circ}C$ chamber in 6 days after inoculating with pathogen and displayed 0.90 (under 10%) of the infected rate. However, other varieties displayed susceptible in the pathogen sprayed plots. 'C-19' was the most resistant variety and no lesion was observed. Based on all data, 'C-19' can be a useful variety for the prevention of downy mildew.

Effects of Brassica rapa SHI-RELATED SEQUENCE overexpression on petunia growth and development (배추 SHI-RELATED SEQUENCE 유전자 발현이 페튜니아 생장 발달에 미치는 영향)

  • Hong, Joon Ki;Suh, Eun Jung;Lee, Su Young;Song, Cheon Young;Lee, Seung Bum;Kim, Jin A;Lee, Soo In;Lee, Yeon-Hee
    • Journal of Plant Biotechnology
    • /
    • v.42 no.3
    • /
    • pp.204-214
    • /
    • 2015
  • SHI-RELATED SEQUENCE (SRS) genes are plant-specific transcription factors that contain a zinc-binding RING finger motif, which play a critical role in plant growth and development. Among Brassica rapa SRS genes, BrSRS7 and BrLRP1 genes, isolated from shoot apical regions are important regulators of plant growth and development. In order to explore the function of BrSRS genes in horticultural plant growth and development, two constructs containing BrSRS7 and BrLRP1 under the control of a cauliflower mosaic virus 35S promoter were introduced into petunia by Agrobacterium-mediated transformation. The resulting transgenic plants were dwarf and compact plants with reduced plant height and diameter. Additionally, these transgenic plants had upward-curled leaves of narrow width and short internodes. Interestingly, the flower shapes of petunia were different among transgenic plants harboring different kinds of SRS genes. These phenotypes were stably inherited through generations $T_2$ and $T_3$. Semi-quantitative RT-PCR analyses of transgenic plants revealed that BrSRS7 and BrLRP1 regulate expression of gibberellin (GA)- and auxinrelated genes, PtAGL15- and PtIAMT1-related, involved in shoot morphogenesis. These results indicate that the overexpression of BrSRS7 and BrLRP1 genes suppressed the growth and development of petunia by regulating expression of GA- and auxin-related genes. From these data, we deduce that BrSRS7 and BrLRP1 genes play an important role in the regulation of plant growth and development in petunia. These findings suggest that transformation with the BrSRS genes can be applied to other species as a tool for growth retardation and modification of plant forms.