DOI QR코드

DOI QR Code

Interactions between Indole-3-acetic Acid Producing Acinetobacter sp. SW5 and Growth of Tomato Plant

Indole-3-acetic acid를 생성하는 Acinetobacter sp. SW5와 토마토 식물 간의 상호작용

  • Kwon, Hyeok-Do (Department of Biological Sciences, Kangwon National University) ;
  • Song, Hong-Gyu (Department of Biological Sciences, Kangwon National University)
  • Received : 2014.08.12
  • Accepted : 2014.10.26
  • Published : 2014.12.31

Abstract

Many rhizobacteria can promote plant growth through various direct or indirect mechanisms, and their production of phytohormones such as indole-3-acetic acid (IAA) may have pronounced effects on growth and development of plants. Rhizobacterial strain isolated from rhizosphere of foxtail (Setaria viridis), Acinetobacter sp. SW5 produced 118.1 mg/L of IAA and 4.5 mg/L of gibberellin ($GA_3$) in brain heart broth medium at 2 and 1 day of incubation, respectively. In a pot test the lengths of stem and root and fresh weight of the germinated tomato seedlings treated with Acinetobacter sp. SW5 significantly increased by 26.3, 33.3, and 105.3%, respectively compared to those of the uninoculated control in 12 weeks of cultivation. When the root exudate secreted from tomato seedlings was analyzed by HPLC, 3.75 ng mg tomato $root^{-1}$ of tryptophan which is an IAA precursor was detected. Acinetobacter sp. SW5 could produce $4.06{\mu}M$ of IAA from root exudate from 8 tomato seedlings. Together with the capability of growth of Acinetobacter sp. SW5 in the tomato root exudates, this IAA secreted by bacteria might contribute to enhance the growth of tomato plants.

많은 근권세균들이 다양한 직간접적인 방법을 통해 식물생장을 촉진할 수 있으며 indole acetic acid (IAA) 같은 식물호르몬의 생산과 분비는 식물의 생장과 발달에 큰 영향을 미친다. 강아지풀의 근권에서 분리된 Acinetobacter sp. SW5는 BHB 배지에서 각각 2일과 1일 배양 시 118.1 mg/L의 IAA와 4.5 mg/L의 지베렐린을 생성하였다. 소규모 재배실험에서 토마토 유묘에 이 균주를 2주 간격으로 처리하면서 12주 재배 시 토마토 식물의 shoot와 뿌리 길이 및 습윤중량이 비접종 대조군과 비교할 때 통계적으로 유의하게 각각 26.3, 33.3과 105.3% 증가하였다. 토마토 유묘의 뿌리로부터 분비되는 삼출물을 HPLC로 분석한 결과 IAA의 전구물질인 아미노산 트립토판이 3.75 ng/mg tomato root 검출되었으며 Acinetobacter sp. SW5는 8개의 토마토 유묘뿌리 삼출물로부터 $4.06{\mu}M$의 IAA를 생성하였다. 토마토 뿌리 삼출물에서 Acinetobacter sp. SW5의 생장능과 더불어 이 세균에 의해 생성된 IAA가 토마토 식물의 생장을 촉진시키는데 관여했을 것으로 추정된다.

Keywords

References

  1. Ahemad, M. and Kilbret, M. 2014. Mechanisms and applications of plant growth promoting rhizobacteria: Current perspective. J. King Saud University - Science 26, 1-20.
  2. Babalola, O.O. 2010. Beneficial bacteria of agricultural importance. Biotechnol. Lett. 32, 1559-1570. https://doi.org/10.1007/s10529-010-0347-0
  3. Ball, D. 1964. Loss-on-ignition as an estimate of organic matter and organic carbon in non-calcareous soil. Soil Sci. 15, 84-92. https://doi.org/10.1111/j.1365-2389.1964.tb00247.x
  4. Baumann, P., Doudoroff, M., and Stanier, R. 1968. A study of the Moraxella group. II. Oxidative-negative species (genus Acinetobacter). J. Bacteriol. 96, 39-42.
  5. Bhawsar, S., Path, S., and Chopade, B. 2012. Biosynthesis pathways of IAA production in Acinetobacter haemolyticus. Agric. Sci. Dig. 32, 214-218.
  6. Bradford, M. 1976. Rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248-254. https://doi.org/10.1016/0003-2697(76)90527-3
  7. Castro-Sowinski, S., Herschkovitz, Y., Okon, Y., and Jurkevitch, E. 2007. Effects of inoculation with plant growth-promoting rhizobacteria on resident rhizosphere microorganisms. FEMS Microbiol. Lett. 276, 1-11. https://doi.org/10.1111/j.1574-6968.2007.00878.x
  8. Chaiharn, M., Chunhaleuchanon, S., Kozo, A., and Lumyong, S. 2008. Screening of rhizobacteria for their plant growth promoting activities. KMITL Sci. Tech. J. 8, 18-23.
  9. Gulati, A., Vyas, P., and Rahi, P. 2009. Plant growth-promoting and rhizosphere-competent Acinetobacter rhizosphaerae strain BIHB723 from the cold deserts of the Himalayas. Curr. Microbiol. 58, 371-377. https://doi.org/10.1007/s00284-008-9339-x
  10. Huddedar, S., Shete, A., Tilekar, J., Gore, S., Dhavale, D., and Chopade, B. 2002. Isolation, characterization, and plasmid pUPI126-mediated indole-3-acetic acid production in Acinetobacter strains from rhizosphere of wheat. Appl. Biochem. Biotechnol. 102-103, 21-39. https://doi.org/10.1385/ABAB:102-103:1-6:021
  11. Indiragandhi, P., Anandham, R., and Madhaiyan, M. 2008. Characterization of plant growth-promoting traits of bacteria isolated from larval guts of diamondback moth Plutella xylostella (Lepidoptera: Plutellidae). Curr. Microiol. 56, 327-333. https://doi.org/10.1007/s00284-007-9086-4
  12. Kamilova, F., Kravchenko, L., Shapshnikov, A., Azarova, T., Makarova, N., and Lugtenberg, B. 2006. Organic acids, sugars, and L-tryptophane in exudates of vegetables growing on stonewool and their effects on activities of rhizosphere bacteria. Mol. Plant Microbe Interact. 19, 250-256. https://doi.org/10.1094/MPMI-19-0250
  13. Kang, S.M., Joo, G.J., Hamayun, M., Na, C.I., Shin, D.H., Kim, H.Y., Hong, J.K., and Lee, I.J. 2009. Gibberellin production and phosphate solubilization by newly isolated strain of Acinetobacter calcoaceticus and its effect on plant growth. Biotechnol. Lett. 31, 277-281. https://doi.org/10.1007/s10529-008-9867-2
  14. Karadeniz, A., Topcuoglu, S., and Inan, S. 2006. Auxin, gibberellin, cytokinin and abscisic acid production in some bacteria. World J. Microbiol. Biotechnol. 22, 1061-1064. https://doi.org/10.1007/s11274-005-4561-1
  15. Kim, W.J. and Song, H.G. 2012. Interactions between biosynthetic pathway and productivity of IAA in some rhizobacteria. Kor. J. Microbiol. 48, 1-7. https://doi.org/10.7845/kjm.2012.48.1.001
  16. Kravchenko, L., Azarova, T., Makarova, N., and Tikhonovich, I. 2004. The effect of tryptophan present in plant root exudates on the phytostimulating activity of rhizobacteria. Microbiology 73, 156-158. https://doi.org/10.1023/B:MICI.0000023982.76684.9d
  17. Kravchenko, L., Shapozhnikov, A., Makarova, N., Azarova, T., L'vova, K., Kostyuk, I., Lyapunova, O., Tikhonovich, I. 2011. Exometabolites of bread wheat and tomato affecting the plant-microbe interactions in the rhizosphere. Rus. J. Plant Physiol. 58, 936-940. https://doi.org/10.1134/S1021443711050128
  18. Lambrecht, M., Okon, Y., Broek, A., and Vanderleyden, J. 2000. Indole- 3-acetic acid: a reciprocal signalling molecule in bacteria-plant interactions. Trends Microbiol. 8, 298-300. https://doi.org/10.1016/S0966-842X(00)01732-7
  19. Leveau, J. and Lindow, S. 2005. Utilization of the plant hormone indole-3-acetic acid for growth by Pseudomonas putida strain 1290. Appl. Environ. Microbiol. 71, 2365-2371. https://doi.org/10.1128/AEM.71.5.2365-2371.2005
  20. Nemec, A., Musilek, M., Sedo, O., De Baere, T., Maixnerova, M., van der Reijden, T., Zdrahal, Z., Vaneechoutte, M., and Dijkshoorn, L. 2010 Acinetobacter bereziniae sp. nov. and Acinetobacter guillouiae sp. nov., to accommodate Acinetobacter genomic species 10 and 11, respectively. J. Syst. Evol. Microbiol. 60, 896-903. https://doi.org/10.1099/ijs.0.013656-0
  21. Patten, C. and Glick, B. 2002. Role of Pseudomonas putida indoleacetic acid in development of the host plant root system. Appl. Environ. Microbiol. 68, 3795-3801. https://doi.org/10.1128/AEM.68.8.3795-3801.2002
  22. Rokhbakhsh-Zamin, F., Sachdev, D., Kazemi-Pour, N., Engineer, A., Pardesi, K., Zinjarde, S., Dhakephalkar, P., and Chopade, B. 2011. Characterization of plant-growth-promoting traits of Acinetobacter species isolated from rhizosphere of Pennisetum glaucum. J. Microbiol. Biotechnol. 21, 556-566.
  23. Shi, Y., Lou, K., and Li, C. 2011. Growth promotion effects of the endophyte Acinetobacter johnsonii strain 3-1 on sugar beet. Symbiosis 54, 159-166. https://doi.org/10.1007/s13199-011-0139-x
  24. Spaepen, S., Vanderleyden, J., and Remans, R. 2007. Indole-3-acetic acid in microbial and microorganism-plant signaling. FEMS Microbiol. Rev. 31, 425-448. https://doi.org/10.1111/j.1574-6976.2007.00072.x
  25. Spaepen, S. and Vanderleyden, J. 2011. Auxin and plant-microbe interactions. Cold Spring Harb. Perspect. Biol. doi: 10.1101/ cshperspect.a001438.
  26. Vessey, J.K. 2003. Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255, 571-586. https://doi.org/10.1023/A:1026037216893

Cited by

  1. The use of Sprout as Precursor for the Production of Indole Acetic Acid by Selected Plant Growth Promoting Rhizobacteria Grown in the Fermentor vol.10, pp.4, 2016, https://doi.org/10.5454/mi.10.4.3
  2. Optimization of Indole-3-acetic Acid (IAA) Production by Bacillus megaterium BM5 vol.49, pp.5, 2016, https://doi.org/10.7745/KJSSF.2016.49.5.461
  3. Expression of Auxin Response Genes SlIAA1 and SlIAA9 in Solanum lycopersicum During Interaction with Acinetobacter guillouiae SW5 vol.25, pp.6, 2014, https://doi.org/10.4014/jmb.1408.08047
  4. 친환경 잔디관리를 위한 가축분퇴비 중 기능성미생물의 분리 및 선발 vol.6, pp.2, 2014, https://doi.org/10.5660/wts.2017.6.2.157
  5. 양송이배지로부터 분리한 Klebsiella michiganensis Jopap-1의 식물생장촉진효과 vol.16, pp.3, 2014, https://doi.org/10.14480/jm.2018.16.3.218
  6. 양송이배지로부터 분리한 Arthrobacter enclensis Yangsong-1의 식물생장촉진효과 vol.17, pp.1, 2014, https://doi.org/10.14480/jm.2019.17.1.12