DOI QR코드

DOI QR Code

Screening for Resistance to Downy Mildew among Major Commercial Cucumber Varieties

주요 오이 품종의 노균병에 대한 저항성 검정

  • Lee, Jung-Sup (Horticultural & Herbal Environment Division, National institute of Horticultural and Herbal Science, Rural Development Administration) ;
  • Han, Kyung-Sook (Horticultural & Herbal Environment Division, National institute of Horticultural and Herbal Science, Rural Development Administration) ;
  • Lee, Seong-Chan (Horticultural & Herbal Environment Division, National institute of Horticultural and Herbal Science, Rural Development Administration) ;
  • Soh, Jae-Woo (Horticultural & Herbal Environment Division, National institute of Horticultural and Herbal Science, Rural Development Administration)
  • 이중섭 (국립원예특작과학원 원예특작환경과) ;
  • 한경숙 (국립원예특작과학원 원예특작환경과) ;
  • 이성찬 (국립원예특작과학원 원예특작환경과) ;
  • 소재우 (국립원예특작과학원 원예특작환경과)
  • Received : 2013.03.22
  • Accepted : 2013.06.20
  • Published : 2013.09.30

Abstract

This study was carried out for the downy mildew resistant test between 2010 and 2012. A set of 22 accessions belonging to 2 wild species and 20 varieties of the genus Cucumis, originating mainly from the Asian Vegetable Research and Development Center (AVRDC) Gene Centre, was evaluated for resistance to Pseudoperonospora cubensis, causal agent of cucumber downy mildew. The youngest fully expanded true leaves were found suitable for in vitro screening. Both leaf discs and full leaves could be kept fresh longer when applying 0.2 ${\mu}g/ml$ of gibberellin acid (GA). The incubation temperature of $20^{\circ}C$ was found to be the most suitable temperature for symptom development comparing with 15 and $25^{\circ}C$. Symptom development was faster when contact diseased leaf discs (2 weeks after inoculation) on to fresh leaf samples comparing with using conidia suspension ($10^5$ spores/ml). The numbers of spots in 'C-19' were lower than other varieties. 'C-19' variety was also showed the highest level of downy mildew resistant at $20^{\circ}C$ chamber in 6 days after inoculating with pathogen and displayed 0.90 (under 10%) of the infected rate. However, other varieties displayed susceptible in the pathogen sprayed plots. 'C-19' was the most resistant variety and no lesion was observed. Based on all data, 'C-19' can be a useful variety for the prevention of downy mildew.

본 연구는 국내 수집 및 아시아채소개발센터 보유 품종인 오이 22종을 이용하여 노균병에 대한 품종별 저항성 정도를 구명하고 우수 품종을 선발하고자 대만 타이난소재 아시아 채소연구 개발 센터에서 수행하였다. 수집 품종에 대한 노균병 병원균 접종은 모든 수집 품종의 생장 단계 중 유엽이 5-6엽 전개되는 유묘 초기에 병원균을 접종하여 검정하였다. 이때 노균병 발병에 최적 발병조건 유지를 위해 온도 조절이 가능한 항온기 내에서 처리 후 일정기간 유지하였다. 노균병균의 접종농도는 $1{\times}10^5$ spores/ml의 포자 현탁액을 오이 잎에 1회 분무 접종 후 잎에 발생한 병반수를 6, 9, 12, 15일 총 4회에 걸쳐 조사하였다. 그 결과 $15^{\circ}C$$25^{\circ}C$ 챔버에서는 병반 형성이 매우 낮았으나 $20^{\circ}C$ 처리에서는 처리 품종당 평균 병반수 20-30개(5엽 기준)를 나타내어 병반 형성이 비교적 높았다. 처리 품종별 병반수는 'C-19' 품종에서 0.90(10-20% 미만)로 다른 품종에 비하여 비교적 병반수가 낮아 노균병에 대한 가장 높은 저항성을 나타내었다. 기타 품종에서는 병반수가 다량 형성되어 노균병에 대한 저항성이 낮았으며 처리 후 경과일수가 길어질수록 더욱 증가되어 유의적인 차이는 나타나지 않았다.

Keywords

References

  1. Angelov, D. and Krasteva, L. 2000. Selecting downy mildewresistant short-fruited cucumbers. In: Proc. Cucurbitaceae 2000, eds. by N. Katzir and H. S. Paris, pp. 135-137. ISHS Press, Ma'ale Ha Hamisha, Israel.
  2. Berkeley, M. S. and Curtis, A. 1868. Peronospora cubensis. J. Linn. Soc. Bot. 10: 363.
  3. Chen, J. F. and Adelberg, J. 2000. Interspecific hybridization in Cucumis-progress, problems and perspectives. HortScience 35: 11-15.
  4. Cohen, R. and Blaier, B. 1990. The use of inoculated leaf disks as a tool for selecting for resistance to powdery mildew in cucurbits. Phytoparasitica 18: 75-76. (Abstract)
  5. Cohen, Y., Meron, I., Mor, N. and Zuriel, S. 2003. A new pathotype of Pseudoperonospora cubensis causing downy mildew in cucurbits in Israel. Phytoparasitica 31: 458-466. https://doi.org/10.1007/BF02979739
  6. Colucci, S. J. and Holmes, G. J. 2007. Fungicide insensitivity and pathotype determination of Pseudoperonospora cubensis, causal agent of cucurbit downy mildew. Phytopathology 97:S24.
  7. Dhillon, N. P. S., Pushpinder, P. S. and Ishiki, K. 1999. Evaluation of landraces of cucumber (Cucumis sativus L.) for resistance to downy mildew. Plant Genet. Resour. Newsl. 119: 59-61.
  8. Garrett, K. A., Dendy, S. P., Frank, E. E., Rouse, M. N. and Travers, S. E. 2006. Climate change effects on plant disease: genomes to ecosystems. Annu. Rev. Phytopathol. 44: 489-509. https://doi.org/10.1146/annurev.phyto.44.070505.143420
  9. Gent, D. H., Mitchell, M. N. and Holmes, G. J. 2009. Genetic and pathogenic relatedness of Pseudoperonospora cubensis and P. humuli: implications for detection and management. Phytopathology 99: S171.
  10. Lebeda, A. and Cohen, Y. 2011. Cucurbit downy mildew (Pseudoperonospora cubensis)-biology, ecology, epidemiology, host-pathogen interactions and control. Eur. J. Plant. Pathol. 129: 157-192. https://doi.org/10.1007/s10658-010-9658-1
  11. Lebeda, A., Widrlechner, M. P. and Urban, J. 2006. Individual and population aspects of interactions between cucurbits and Pseudoperonospora cubensis: pathotypes and races. In: Proceedings of Cucurbitaceae 2006, ed. by G. J. Holmes, pp. 453-467. Raleigh, NC, USA, Universal Press.
  12. Oerke, E. C., Steiner, U., Dehne, H. W. and Lindenthal, M. 2006. Thermal imaging of cucumber leaves affected by downy mildew and environmental conditions. J. Exp. Bot. 57: 2121-2132. https://doi.org/10.1093/jxb/erj170
  13. Perchepied, L., Bardin, M., Dogimont, C. and Pitrat, M. 2005. Relationship between loci conferring downy mildew and powdery mildew in melon assessed by quantitative trait loci mapping. Phytopathology 95: 556-565. https://doi.org/10.1094/PHYTO-95-0556
  14. Petrov, L., Boodert, K., Sheck, L., Baider, A., Rubin, E., Cohen, Y., Datzir, N. and Paris, H. S. 2000. Resistance to downy mildew, Pseudoperonospora cubensis, in cucumbers. Acta Horticulturae 510: 203-209.
  15. Shetty, N. V., Wehner, T. C., Thomas, C. E., Doruchowski, R. W. and Vasanth Shetty, K. P. 2002. Evidence for downy mildew races in cucumber tested in Asia, Europe, and North America. Sci. Hortic. 94: 231-239. https://doi.org/10.1016/S0304-4238(02)00013-4

Cited by

  1. QTL mapping for downy mildew resistance in cucumber via bulked segregant analysis using next-generation sequencing and conventional methods vol.130, pp.1, 2017, https://doi.org/10.1007/s00122-016-2806-z