1 |
Ahemad, M. and Kilbret, M. 2014. Mechanisms and applications of plant growth promoting rhizobacteria: Current perspective. J. King Saud University - Science 26, 1-20.
|
2 |
Babalola, O.O. 2010. Beneficial bacteria of agricultural importance. Biotechnol. Lett. 32, 1559-1570.
DOI
ScienceOn
|
3 |
Ball, D. 1964. Loss-on-ignition as an estimate of organic matter and organic carbon in non-calcareous soil. Soil Sci. 15, 84-92.
DOI
|
4 |
Baumann, P., Doudoroff, M., and Stanier, R. 1968. A study of the Moraxella group. II. Oxidative-negative species (genus Acinetobacter). J. Bacteriol. 96, 39-42.
|
5 |
Bhawsar, S., Path, S., and Chopade, B. 2012. Biosynthesis pathways of IAA production in Acinetobacter haemolyticus. Agric. Sci. Dig. 32, 214-218.
|
6 |
Bradford, M. 1976. Rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248-254.
DOI
ScienceOn
|
7 |
Castro-Sowinski, S., Herschkovitz, Y., Okon, Y., and Jurkevitch, E. 2007. Effects of inoculation with plant growth-promoting rhizobacteria on resident rhizosphere microorganisms. FEMS Microbiol. Lett. 276, 1-11.
DOI
|
8 |
Chaiharn, M., Chunhaleuchanon, S., Kozo, A., and Lumyong, S. 2008. Screening of rhizobacteria for their plant growth promoting activities. KMITL Sci. Tech. J. 8, 18-23.
|
9 |
Gulati, A., Vyas, P., and Rahi, P. 2009. Plant growth-promoting and rhizosphere-competent Acinetobacter rhizosphaerae strain BIHB723 from the cold deserts of the Himalayas. Curr. Microbiol. 58, 371-377.
DOI
ScienceOn
|
10 |
Huddedar, S., Shete, A., Tilekar, J., Gore, S., Dhavale, D., and Chopade, B. 2002. Isolation, characterization, and plasmid pUPI126-mediated indole-3-acetic acid production in Acinetobacter strains from rhizosphere of wheat. Appl. Biochem. Biotechnol. 102-103, 21-39.
DOI
|
11 |
Indiragandhi, P., Anandham, R., and Madhaiyan, M. 2008. Characterization of plant growth-promoting traits of bacteria isolated from larval guts of diamondback moth Plutella xylostella (Lepidoptera: Plutellidae). Curr. Microiol. 56, 327-333.
DOI
ScienceOn
|
12 |
Kamilova, F., Kravchenko, L., Shapshnikov, A., Azarova, T., Makarova, N., and Lugtenberg, B. 2006. Organic acids, sugars, and L-tryptophane in exudates of vegetables growing on stonewool and their effects on activities of rhizosphere bacteria. Mol. Plant Microbe Interact. 19, 250-256.
DOI
ScienceOn
|
13 |
Kang, S.M., Joo, G.J., Hamayun, M., Na, C.I., Shin, D.H., Kim, H.Y., Hong, J.K., and Lee, I.J. 2009. Gibberellin production and phosphate solubilization by newly isolated strain of Acinetobacter calcoaceticus and its effect on plant growth. Biotechnol. Lett. 31, 277-281.
DOI
ScienceOn
|
14 |
Karadeniz, A., Topcuoglu, S., and Inan, S. 2006. Auxin, gibberellin, cytokinin and abscisic acid production in some bacteria. World J. Microbiol. Biotechnol. 22, 1061-1064.
DOI
ScienceOn
|
15 |
Kim, W.J. and Song, H.G. 2012. Interactions between biosynthetic pathway and productivity of IAA in some rhizobacteria. Kor. J. Microbiol. 48, 1-7.
DOI
|
16 |
Leveau, J. and Lindow, S. 2005. Utilization of the plant hormone indole-3-acetic acid for growth by Pseudomonas putida strain 1290. Appl. Environ. Microbiol. 71, 2365-2371.
DOI
|
17 |
Kravchenko, L., Azarova, T., Makarova, N., and Tikhonovich, I. 2004. The effect of tryptophan present in plant root exudates on the phytostimulating activity of rhizobacteria. Microbiology 73, 156-158.
DOI
|
18 |
Kravchenko, L., Shapozhnikov, A., Makarova, N., Azarova, T., L'vova, K., Kostyuk, I., Lyapunova, O., Tikhonovich, I. 2011. Exometabolites of bread wheat and tomato affecting the plant-microbe interactions in the rhizosphere. Rus. J. Plant Physiol. 58, 936-940.
DOI
|
19 |
Lambrecht, M., Okon, Y., Broek, A., and Vanderleyden, J. 2000. Indole- 3-acetic acid: a reciprocal signalling molecule in bacteria-plant interactions. Trends Microbiol. 8, 298-300.
DOI
ScienceOn
|
20 |
Nemec, A., Musilek, M., Sedo, O., De Baere, T., Maixnerova, M., van der Reijden, T., Zdrahal, Z., Vaneechoutte, M., and Dijkshoorn, L. 2010 Acinetobacter bereziniae sp. nov. and Acinetobacter guillouiae sp. nov., to accommodate Acinetobacter genomic species 10 and 11, respectively. J. Syst. Evol. Microbiol. 60, 896-903.
DOI
ScienceOn
|
21 |
Patten, C. and Glick, B. 2002. Role of Pseudomonas putida indoleacetic acid in development of the host plant root system. Appl. Environ. Microbiol. 68, 3795-3801.
DOI
ScienceOn
|
22 |
Rokhbakhsh-Zamin, F., Sachdev, D., Kazemi-Pour, N., Engineer, A., Pardesi, K., Zinjarde, S., Dhakephalkar, P., and Chopade, B. 2011. Characterization of plant-growth-promoting traits of Acinetobacter species isolated from rhizosphere of Pennisetum glaucum. J. Microbiol. Biotechnol. 21, 556-566.
|
23 |
Vessey, J.K. 2003. Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255, 571-586.
DOI
ScienceOn
|
24 |
Shi, Y., Lou, K., and Li, C. 2011. Growth promotion effects of the endophyte Acinetobacter johnsonii strain 3-1 on sugar beet. Symbiosis 54, 159-166.
DOI
|
25 |
Spaepen, S., Vanderleyden, J., and Remans, R. 2007. Indole-3-acetic acid in microbial and microorganism-plant signaling. FEMS Microbiol. Rev. 31, 425-448.
DOI
ScienceOn
|
26 |
Spaepen, S. and Vanderleyden, J. 2011. Auxin and plant-microbe interactions. Cold Spring Harb. Perspect. Biol. doi: 10.1101/ cshperspect.a001438.
|