Browse > Article
http://dx.doi.org/10.7845/kjm.2014.4050

Interactions between Indole-3-acetic Acid Producing Acinetobacter sp. SW5 and Growth of Tomato Plant  

Kwon, Hyeok-Do (Department of Biological Sciences, Kangwon National University)
Song, Hong-Gyu (Department of Biological Sciences, Kangwon National University)
Publication Information
Korean Journal of Microbiology / v.50, no.4, 2014 , pp. 302-307 More about this Journal
Abstract
Many rhizobacteria can promote plant growth through various direct or indirect mechanisms, and their production of phytohormones such as indole-3-acetic acid (IAA) may have pronounced effects on growth and development of plants. Rhizobacterial strain isolated from rhizosphere of foxtail (Setaria viridis), Acinetobacter sp. SW5 produced 118.1 mg/L of IAA and 4.5 mg/L of gibberellin ($GA_3$) in brain heart broth medium at 2 and 1 day of incubation, respectively. In a pot test the lengths of stem and root and fresh weight of the germinated tomato seedlings treated with Acinetobacter sp. SW5 significantly increased by 26.3, 33.3, and 105.3%, respectively compared to those of the uninoculated control in 12 weeks of cultivation. When the root exudate secreted from tomato seedlings was analyzed by HPLC, 3.75 ng mg tomato $root^{-1}$ of tryptophan which is an IAA precursor was detected. Acinetobacter sp. SW5 could produce $4.06{\mu}M$ of IAA from root exudate from 8 tomato seedlings. Together with the capability of growth of Acinetobacter sp. SW5 in the tomato root exudates, this IAA secreted by bacteria might contribute to enhance the growth of tomato plants.
Keywords
Acinetobacter sp. SW5; indole acetic acid; plant growth promotion; tomato root exudates; tryptophan;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Ahemad, M. and Kilbret, M. 2014. Mechanisms and applications of plant growth promoting rhizobacteria: Current perspective. J. King Saud University - Science 26, 1-20.
2 Babalola, O.O. 2010. Beneficial bacteria of agricultural importance. Biotechnol. Lett. 32, 1559-1570.   DOI   ScienceOn
3 Ball, D. 1964. Loss-on-ignition as an estimate of organic matter and organic carbon in non-calcareous soil. Soil Sci. 15, 84-92.   DOI
4 Baumann, P., Doudoroff, M., and Stanier, R. 1968. A study of the Moraxella group. II. Oxidative-negative species (genus Acinetobacter). J. Bacteriol. 96, 39-42.
5 Bhawsar, S., Path, S., and Chopade, B. 2012. Biosynthesis pathways of IAA production in Acinetobacter haemolyticus. Agric. Sci. Dig. 32, 214-218.
6 Bradford, M. 1976. Rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248-254.   DOI   ScienceOn
7 Castro-Sowinski, S., Herschkovitz, Y., Okon, Y., and Jurkevitch, E. 2007. Effects of inoculation with plant growth-promoting rhizobacteria on resident rhizosphere microorganisms. FEMS Microbiol. Lett. 276, 1-11.   DOI
8 Chaiharn, M., Chunhaleuchanon, S., Kozo, A., and Lumyong, S. 2008. Screening of rhizobacteria for their plant growth promoting activities. KMITL Sci. Tech. J. 8, 18-23.
9 Gulati, A., Vyas, P., and Rahi, P. 2009. Plant growth-promoting and rhizosphere-competent Acinetobacter rhizosphaerae strain BIHB723 from the cold deserts of the Himalayas. Curr. Microbiol. 58, 371-377.   DOI   ScienceOn
10 Huddedar, S., Shete, A., Tilekar, J., Gore, S., Dhavale, D., and Chopade, B. 2002. Isolation, characterization, and plasmid pUPI126-mediated indole-3-acetic acid production in Acinetobacter strains from rhizosphere of wheat. Appl. Biochem. Biotechnol. 102-103, 21-39.   DOI
11 Indiragandhi, P., Anandham, R., and Madhaiyan, M. 2008. Characterization of plant growth-promoting traits of bacteria isolated from larval guts of diamondback moth Plutella xylostella (Lepidoptera: Plutellidae). Curr. Microiol. 56, 327-333.   DOI   ScienceOn
12 Kamilova, F., Kravchenko, L., Shapshnikov, A., Azarova, T., Makarova, N., and Lugtenberg, B. 2006. Organic acids, sugars, and L-tryptophane in exudates of vegetables growing on stonewool and their effects on activities of rhizosphere bacteria. Mol. Plant Microbe Interact. 19, 250-256.   DOI   ScienceOn
13 Kang, S.M., Joo, G.J., Hamayun, M., Na, C.I., Shin, D.H., Kim, H.Y., Hong, J.K., and Lee, I.J. 2009. Gibberellin production and phosphate solubilization by newly isolated strain of Acinetobacter calcoaceticus and its effect on plant growth. Biotechnol. Lett. 31, 277-281.   DOI   ScienceOn
14 Karadeniz, A., Topcuoglu, S., and Inan, S. 2006. Auxin, gibberellin, cytokinin and abscisic acid production in some bacteria. World J. Microbiol. Biotechnol. 22, 1061-1064.   DOI   ScienceOn
15 Kim, W.J. and Song, H.G. 2012. Interactions between biosynthetic pathway and productivity of IAA in some rhizobacteria. Kor. J. Microbiol. 48, 1-7.   DOI
16 Leveau, J. and Lindow, S. 2005. Utilization of the plant hormone indole-3-acetic acid for growth by Pseudomonas putida strain 1290. Appl. Environ. Microbiol. 71, 2365-2371.   DOI
17 Kravchenko, L., Azarova, T., Makarova, N., and Tikhonovich, I. 2004. The effect of tryptophan present in plant root exudates on the phytostimulating activity of rhizobacteria. Microbiology 73, 156-158.   DOI
18 Kravchenko, L., Shapozhnikov, A., Makarova, N., Azarova, T., L'vova, K., Kostyuk, I., Lyapunova, O., Tikhonovich, I. 2011. Exometabolites of bread wheat and tomato affecting the plant-microbe interactions in the rhizosphere. Rus. J. Plant Physiol. 58, 936-940.   DOI
19 Lambrecht, M., Okon, Y., Broek, A., and Vanderleyden, J. 2000. Indole- 3-acetic acid: a reciprocal signalling molecule in bacteria-plant interactions. Trends Microbiol. 8, 298-300.   DOI   ScienceOn
20 Nemec, A., Musilek, M., Sedo, O., De Baere, T., Maixnerova, M., van der Reijden, T., Zdrahal, Z., Vaneechoutte, M., and Dijkshoorn, L. 2010 Acinetobacter bereziniae sp. nov. and Acinetobacter guillouiae sp. nov., to accommodate Acinetobacter genomic species 10 and 11, respectively. J. Syst. Evol. Microbiol. 60, 896-903.   DOI   ScienceOn
21 Patten, C. and Glick, B. 2002. Role of Pseudomonas putida indoleacetic acid in development of the host plant root system. Appl. Environ. Microbiol. 68, 3795-3801.   DOI   ScienceOn
22 Rokhbakhsh-Zamin, F., Sachdev, D., Kazemi-Pour, N., Engineer, A., Pardesi, K., Zinjarde, S., Dhakephalkar, P., and Chopade, B. 2011. Characterization of plant-growth-promoting traits of Acinetobacter species isolated from rhizosphere of Pennisetum glaucum. J. Microbiol. Biotechnol. 21, 556-566.
23 Vessey, J.K. 2003. Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255, 571-586.   DOI   ScienceOn
24 Shi, Y., Lou, K., and Li, C. 2011. Growth promotion effects of the endophyte Acinetobacter johnsonii strain 3-1 on sugar beet. Symbiosis 54, 159-166.   DOI
25 Spaepen, S., Vanderleyden, J., and Remans, R. 2007. Indole-3-acetic acid in microbial and microorganism-plant signaling. FEMS Microbiol. Rev. 31, 425-448.   DOI   ScienceOn
26 Spaepen, S. and Vanderleyden, J. 2011. Auxin and plant-microbe interactions. Cold Spring Harb. Perspect. Biol. doi: 10.1101/ cshperspect.a001438.