• Title/Summary/Keyword: Geosynthetic strip reinforcement

Search Result 11, Processing Time 0.04 seconds

Pullout Resistance of Geosynthetic Strip with Rounded Band Anchor (수동저항부가 형성된 띠형 섬유보강재의 인발저항 특성)

  • Lee, Kwang-Wu;Cho, Sam-Deok;Han, Jung-Geun;Hong, Ki-Kwon
    • Journal of the Korean Geosynthetics Society
    • /
    • v.10 no.3
    • /
    • pp.43-51
    • /
    • 2011
  • This paper describes the results of pullout tests in the laboratory, which are conducted to assess the pullout performance of recently developed geosynthetic strip reinforcement with rounded band anchor. The geosynthetic strip can be used as reinforcements in reinforced soil wall with concrete block facing. The pullout resistance of the geosynthetic strip with rounded band anchor is mobilized by the combination of the interface friction between soil-reinforcement surface and the passive soil resistance caused by the rounded band anchor. Therefore, both the friction resistance and the passive resistance have to be considered in design. From the pullout test results, when the rounded band anchor are formed in the end part of the geosynthetic strip, pullout strength increases about from 10% to 65%. The passive resistance can be evaluated based on the pullout test results.

Evaluation of Creep Reduction Factor for Geosynthetic Strip Reinforcement with Folding Grooves (접힘홈이 형성된 띠형 섬유보강재의 크리프 감소계수 평가)

  • Lee, Kwang-Wu;Cho, Sam-Deok
    • Journal of the Korean Geosynthetics Society
    • /
    • v.17 no.4
    • /
    • pp.213-224
    • /
    • 2018
  • In this study, a series of accelerated creep tests (SIM) was carried out on geosynthetic strip reinforcements with folding grooves having different tensile strengths (15 kN, 25 kN, 35 kN, 50 kN, 70 kN, and 90 kN) to analyze creep characteristics and to assess creep reduction factors. In particular, long-term creep tests were conducted on geosynthetic strip reinforcements with 25 kN tensile strength, which is widely used, to compare and analyze the accelerated creep test results. As a result, the creep reduction factor increased with an increasing design life of reinforcement. In addition, geosynthetic strip reinforcement using the same material and manufacturing method showed similar creep reduction factors at the same design life for different tensile strengths. When both long-term and accelerated creep test data were used, the creep reduction factors from the accelerated test were estimated to be 5.9%~7.1% less than those from the long-term creep test for the design life ranging from 50 to 100 years.

Field Monitoring of Panel-type Reinforced Earth Walls Using Geosynthetic Strip Reinforcement with Folding Grooves (접힘홈이 형성된 띠형 섬유보강재를 사용한 패널식 보강토옹벽의 현장계측 연구)

  • Lee, Kwang-Wu;Cho, Sam-Deok
    • Journal of the Korean Geosynthetics Society
    • /
    • v.17 no.4
    • /
    • pp.179-188
    • /
    • 2018
  • A new style of panel-type reinforced earth wall is a more integrated structure by connecting the geosynthetic strip reinforcement with a folding groove directly to the front panel through C-shaped insertion hole embedded in the panel. In this study, field measurements were conducted on two reinforced earth walls constructed at different sites to assess the field applicability and structural stability of the new style of panel-type reinforced earth wall. The horizontal displacement of the front panel, tensile deformation of the geosynthetic strip reinforcement, and horizontal earth pressure acting on the panel were measured and analyzed through the field measurements. According to the field measurements, after completion of the reinforced earth wall construction, the maximum horizontal earth pressure applied to the front panel was less than two-thirds of the Rankine earth pressure, and the maximum horizontal displacement of the front panel was less than 0.5% of the wall height, and the maximum tensile strain generated on the reinforcement was less than 1.0%. Therefore, it was found that two reinforced earth walls constructed at different sites remained stable.

Evaluation of Strain Distribution and Pullout Strength based on Width and Horizontal Spacing of Geosynthetic Strip (띠형 섬유보강재의 폭과 설치간격에 따른 변형률 분포 및 인발강도 특성 평가)

  • Lee, Kwang-Wu;Cho, Sam-Deok;Han, Jung-Geun;Hong, Ki-Kwon
    • Journal of the Korean Geosynthetics Society
    • /
    • v.11 no.2
    • /
    • pp.39-47
    • /
    • 2012
  • This paper describes large-scale pullout test results of geosynthetic strip, which can be applied in reinforced earth wall with block-type wall facing. The pullout tests are conducted to evaluate the strain distribution, the induced pullout force and the pullout strength. The maximum pullout force is appeared regardless of reinforcement width and normal stress when end displacement is less than 15 mm. The pullout behavior based on horizontal spacing of reinforcement was similar in relationship between pullout force and end displacement. The strain distribution and pullout force distribution of the geosynthetic strip are concentrated in the front part of reinforcement, and it appeared clearly in higher normal stress condition This means that the pullout behavior of geosynthetic strip is affected by the bond between soil and friction resistance reinforcement according normal stress. Therefore, the pullout resistance design is reasonable when pullout behavior of geosynthetic strip should be evaluated by effective length considering tensile characteristic.

Experimental Study on Long-Term Performance Evaluation of Geosynthetic Strip Reinforcement (띠형 섬유보강재의 장기성능 평가를 위한 실험적 연구)

  • Lee, Kwang-Wu;Kim, Ju-Hyeung;Cho, Sam-Deok;Han, Jung-Geun;Yoon, Won-Il;Hong, Ki-Kwon
    • Journal of the Korean Geosynthetics Society
    • /
    • v.9 no.4
    • /
    • pp.75-84
    • /
    • 2010
  • In this study, the long-term performance tests, which have extensibility, creep deformation, installation resistance and durability characteristic, is conducted to apply geosynthetic strip in field. The strength reduction factors using the test results are evaluated in order to calculate long-term design tensile strength. First, the creep deformation was evaluated by both the stepped isothermal method(SIM) and the time-temperature superposition(TTS) method. The creep reduction factor is reasonable to apply 1.6. Second, the result of installation damage test had little damage of yarn, which affected strength of reinforcement. Therefore, it can be analyzed that the installation damage of geosynthetic strip has little effect of long-term design tensile strength. Finally, the durability reduction factor considering chemical, biological and outdoor exposure resistance is reasonable to apply 1.1, which is considered the stability and economic efficiency of reinforced earth wall using geosynthetic strip.

  • PDF

Evaluation on Stability of Reinforced Earth Wall using Geosynthetic Strip with Rounded Band Anchor (띠형 섬유보강재가 적용된 블록식 보강토옹벽의 안정성 평가)

  • Lee, Kwang-Wu;Cho, Sam-Deok;Han, Jung-Geun;Hong, Ki-Kwon
    • Journal of the Korean Geosynthetics Society
    • /
    • v.11 no.3
    • /
    • pp.43-51
    • /
    • 2012
  • This paper describes the stability evaluation of reinforced earth wall using geosynthetic strip based on field test. The wall facing, which is applied in field, is able to present excellent scenery, and the reinforcement has improvement effect of pullout resistance based on rounded band anchor. The measurement is conducted according to construction elapsed time of structure for earth pressure, horizontal displacement of wall facing and reinforcement strain in field test. The evaluation results show that the measured earth pressure is less than theoretical earth pressure due to dispersion effect of earth pressure by geosynthetic strip. The horizontal displacement of wall facing is also satisfied a empirical criteria. The measured strain of reinforcement had nearly no effect on stability of the reinforced earth wall. Therefore, the geosynthetic strip with rounded band anchor can be applied in the reinforced earth wall, and the reinforced earth wall with geosynthetic strip can be commonly used in field because it has a structural stability.

Pullout Resistance by Horizontal Spacing of Geosynthetic Strip (띠형 섬유보강재의 설치간격에 따른 인발저항 특성에 관한 연구)

  • Han, Jung-Geun;Yoon, Won-Il;Hong, Ki-Kwon;Lee, Kwang-Wu;Kim, Ju-Hyong;Cho, Sam-Deok
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.315-324
    • /
    • 2010
  • In this study, the pullout tests are conducted to evaluate the pullout resistance of the geosynthetic strip with or without bearing resistance zone. The test results are indicated that the pullout resistance of the geosynthetic strip without bearing resistance zone is not affected by horizontal spacing. However, the horizontal spacing of reinforcement with bearing resistance zone affects the bearing resistance. In other words, it is indicated that the bearing resistance at spacing of 210mm is larger than that at spacing of 260mm. This means that the pullout strength at spacing of 210mm is larger than that at spacing of 260mm. Therefore.

  • PDF

Analysis of Reduction Factors to Creep Deformation of Reinforced Geosynthetics

  • Jeon, Han-Yong;Yuu, Jung-Jo;Mok, Mun-Sung
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2003.10a
    • /
    • pp.104-104
    • /
    • 2003
  • Geosynthetic Reinforcements - membrane drawn type, warp/knitted type, junction bonded type and composite type geogrids, strip type reinforcement - were used to compare the long-term perfor-mance by total factor of safety with reduction factors during service periods. To evaluate the reduction factors, wide-width tensile property, installation damage, creep deformation, chemical and biological degradation tests were performed. Long-term design strengths of geosynthetic reinforcements were calculated by using GRI standard Test Method GG4.

  • PDF

Pullout Resistance Characteristics of Strip-type Reinforcement based on Extensibility (신장성에 따른 띠형 보강재의 인발저항 특성)

  • Lee, Kwang-Wu;Cho, Sam-Deok;Han, Jung-Geun;Hong, Kikwon
    • Journal of the Korean Geosynthetics Society
    • /
    • v.11 no.4
    • /
    • pp.37-44
    • /
    • 2012
  • This paper describes large scale pullout test results, in order to evaluate extensibility effect of strip-type reinforcement. The same test for ribbed steel strip reinforcement also is conducted to compare the friction resistance reinforcements' evaluation results. The pullout resistance of the ribbed steel strip reinforcement, which has a small cross sectional areas, was better than the friction resistance reinforcements' due to the bearing (passive) resistance. In case of friction resistance reinforcements, the pullout resistance of extensible reinforcement was better than inextensible reinforcement' even though they have a similar cross sectional areas.

A Study on Bearing Capacity according to the Number of Reinforcement Layers in Sandy Ground Reinforced by Mats of Equal-intervals (등간격의 매트로 보강된 모래지반의 보강층수에 따른 지지력에 관한 연구)

  • 임종철;박성재;주인곤;이재열;이민희
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.6
    • /
    • pp.201-217
    • /
    • 1999
  • Bearing capacity of soil can be improved by several conventional ground improvement techniques like stabilization and compaction. In recent time, the use of reinforced soil has become popular due to the availability of durable strong geosynthetic materials. In this papers, through the laboratory model tests on sandy ground reinforced by mats about the strip footing under plane strain condition, the effects of bearing capacity improvement and behaviour of sandy ground were observed. And bearing capacities calculated by proposed method and measured by tests were compared.

  • PDF