DOI QR코드

DOI QR Code

Field Monitoring of Panel-type Reinforced Earth Walls Using Geosynthetic Strip Reinforcement with Folding Grooves

접힘홈이 형성된 띠형 섬유보강재를 사용한 패널식 보강토옹벽의 현장계측 연구

  • Lee, Kwang-Wu (Department of Infrastructure Safety Research, Korea Institute of Civil engineering and building Technology) ;
  • Cho, Sam-Deok (Department of Infrastructure Safety Research, Korea Institute of Civil engineering and building Technology)
  • Received : 2018.11.14
  • Accepted : 2018.12.10
  • Published : 2018.12.30

Abstract

A new style of panel-type reinforced earth wall is a more integrated structure by connecting the geosynthetic strip reinforcement with a folding groove directly to the front panel through C-shaped insertion hole embedded in the panel. In this study, field measurements were conducted on two reinforced earth walls constructed at different sites to assess the field applicability and structural stability of the new style of panel-type reinforced earth wall. The horizontal displacement of the front panel, tensile deformation of the geosynthetic strip reinforcement, and horizontal earth pressure acting on the panel were measured and analyzed through the field measurements. According to the field measurements, after completion of the reinforced earth wall construction, the maximum horizontal earth pressure applied to the front panel was less than two-thirds of the Rankine earth pressure, and the maximum horizontal displacement of the front panel was less than 0.5% of the wall height, and the maximum tensile strain generated on the reinforcement was less than 1.0%. Therefore, it was found that two reinforced earth walls constructed at different sites remained stable.

본 연구에서는 새로운 형태의 패널식 보강토옹벽에 대한 현장 적용성 및 구조 안정성을 평가하기 위하여 두 개소 현장에서 현장계측을 수행하였다. 새로운 형태의 패널식 보강토옹벽은 접힘홈이 형성된 띠형 섬유보강재를 패널식 전면벽체에 매립된 C형 삽입구를 통해 직접 연결함으로써 보다 일체화된 구조를 형성시킨 보강토옹벽이다. 현장계측에서는 보강토옹벽의 시공 중 및 완료 후에 발생하는 전면벽체의 수평변위와 띠형 섬유보강재의 인장변형, 전면벽체에 작용하는 수평토압 등을 측정하고 분석하였다. 분석 결과, 보강토옹벽 시공 완료 후에 전면벽체에 작용하는 최대 수평토압은 Rankine 토압의 2/3 이하 수준이고, 전면벽체에 발생된 최대 수평변위는 보강토옹벽 높이의 0.5% 이하 수준이며, 보강재에 유발된 최대 인장변형률은 1.0% 이하로 나타나 두 현장의 보강토옹벽이 모두 안정한 상태를 유지하고 있음을 알 수 있었다.

Keywords

HKTHB3_2018_v17n4_179_f0001.png 이미지

Fig. 1. Schematic view of the new style of panel-type reinforced earth wall

HKTHB3_2018_v17n4_179_f0002.png 이미지

Fig. 2. Geosynthetic strip reinforcement used for construction of reinforced earth walls

HKTHB3_2018_v17n4_179_f0003.png 이미지

Fig. 3. Grain size distribution curve of backfill material (2nd Yeongdong Expressway site)

HKTHB3_2018_v17n4_179_f0004.png 이미지

Fig. 4. Construction of the TieRect panel-type reinforced earth wall (Palyong Tunnel site)

HKTHB3_2018_v17n4_179_f0005.png 이미지

Fig. 5. Cross-sectional view with measurement point

HKTHB3_2018_v17n4_179_f0006.png 이미지

Fig. 6. Installation of instrumentation

HKTHB3_2018_v17n4_179_f0007.png 이미지

Fig. 7. Lateral earth pressure according to wall height (2nd Yeongdong Expressway site)

HKTHB3_2018_v17n4_179_f0008.png 이미지

Fig. 8. Lateral earth pressure according to wall height (Palyong Tunnel site)

HKTHB3_2018_v17n4_179_f0009.png 이미지

Fig. 9. Measurement result of inclination of wall facing (2nd Yeongdong Expressway site)

HKTHB3_2018_v17n4_179_f0010.png 이미지

Fig. 10. Measurement result of horizontal displacement of wall facing (Palyong Tunnel site)

HKTHB3_2018_v17n4_179_f0011.png 이미지

Fig. 11. Tensile strain of reinforcements according to construction stage (2nd Yeongdong Expressway site)

HKTHB3_2018_v17n4_179_f0012.png 이미지

Fig. 12. Tensile strain of reinforcements according to construction stage (Palyong Tunnel site)

Table 1. Installed location of instrumentation devices for field monitoring

HKTHB3_2018_v17n4_179_t0001.png 이미지

References

  1. Cho, S. D. (2018), "Technical development status of reinforced earth wall in Korea", Proc. of the KGS Spring National Conference 2018, Yeosu, Vol.1, pp.1-13.
  2. Elias, V., Christopher, B. R. and Berg, R. R. (2001), Mechanically Stabilized Earth Walls and Reinforced Soil Slopes Design and Construction Guidelines, Publication No. FHWANHI-00-043, U.S. DOT FHWA, 393p.
  3. Ingold, T.S. (1982), Reinforced Earth, Thomas Telford, London.
  4. Jeon, H. Y., Ryu, J. J., Kim, H. T., Kim, K. M. and Kim, Y. Y. (2003), "Assessment of creep properties of strip type fiber reinforcement", Journal of Korean Geotechnical Society, Vol.19, No.2, pp.279-289.
  5. Kim, S. K. and Lee, E. S. (1996), "Apparent coefficients of friction between weathered granite soils and strip reinforcements", Journal of Korean Geotechnical Society, Vol.12, No.5, pp. 137-151.
  6. Korean Geosynthetics Society (2007), Characteristics and Application of Geosynthetics, 660p.
  7. Lee, K. W., Kim, J. H., Cho, S. D., Han, J. G., Yoon, W. I. and Hong, K. K. (2010), "Experimental study on long-term performance evaluation of geosynthetic strip reinforcement", Journal of Korean Geosynthetics Society, Vol.9, No.4, pp. 75-84.
  8. Lee, K. W., Cho, S. D., Han, J. G. and Hong, K. K. (2011a), "Pullout resistance of geosynthetic strip with rounded band anchor", Journal of Korean Geosynthetics Society, Vol.10, No.3, pp.43-51. https://doi.org/10.12814/JKGSS.2011.10.3.043
  9. Lee, K. W., Cho, S. D., Han, J. G. and Hong, K. K. (2011b), "Behaviour of reinforced earth wall with steel framed-facing based on field test", Journal of Korean Geosynthetics Society, Vol.10, No.4, pp.37-47. https://doi.org/10.12814/JKGSS.2011.10.4.037
  10. Ministry of Land, Infrastructure and Transport (2013), Provisional Guidelines on the Design, Construction and Maintenance of Reinforced Earth Walls, 29 p.
  11. Vidal, H. (1963), "Diffusion restpeinte de la terre arree", Patent No.1 069 361, Patent Office, London.