• Title/Summary/Keyword: Geometric Construction

Search Result 489, Processing Time 0.025 seconds

Discrete Optimum Design of Semi-rigid Steel Frames Using Refined Plastic Hinge Analysis and Genetic Algorithm (개선소성힌지해석과 유전자 알고리즘을 이용한 반강접 강골조의 이산최적설계)

  • Lee, Mal Suk;Yun, Young Mook;Kang, Moon Myoung
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.2 s.69
    • /
    • pp.201-213
    • /
    • 2004
  • A GA-based optimum design algorithm and a program for plane steel frame structures with semi-rigid connections are presented. The algorithm is incorporated with the refined plastic hinge analysis method wherein geometric nonlinearity is considered by using the stability functions of beam-column members, and material nonlinearity, by using the gradual stiffness degradation model that includes the effects of residual stresses, moment redistribution through the occurrence of plastic hinges, semi-rigid connections, and geometric imperfection of members. In the genetic algorithm, the tournament selection method and micro-GAs are employed. The fitness function for the genetic algorithm is expressed as an unconstrained function composed of objective and penalty functions. The objective and penalty functions are expressed as the weight of steel frames and the constraint functions, respectively. In particular, the constraint functions fulfill the requirements of load-carrying capacity, serviceability, ductility, and construction workability. To verify the appropriateness of the present method, the optimal design results of two plane steel frames with rigid and semi-rigid connections are compared.

Analysis of Gas Pipeline Movement and Stress Estimation (가스배관 위치이동 해석 및 응력 예측 기법 개발)

  • Kim, Joon Ho;Kim, Dong Hyawn;Lee, Sang Geun;Hong, Seong Kyeong;Jeong, Sek Young
    • Journal of Korean Society of Steel Construction
    • /
    • v.21 no.3
    • /
    • pp.203-210
    • /
    • 2009
  • If there are some construction works that affect the stability of buried pipelines, the pipelines should be moved to guarantee their safety. In this paper, modeling methods for analyzing the movement of pipelines were sought, and the step-by-step stress estimation method of moving pipelines was developed. Some factors affecting of pipeline response such as the element type, the element size, boundary modeling, and geometric non-linearity were quantitatively investigated. In addition, some conditions in which accuracy and effectiveness can be compromised in the analysis of long pipelines were identified. A neural network was used to estimate the pipeline stress. The inputs to the neural network included step-by-step displacements, and the output was the resulting stress at each movement step. After training the neural network, it can be used to estimate pipeline stresses at some sub-steps that are not included in the training. A Windows-based stress estimation program was developed.

단면도를 이용한 3차원 파라메트릭 설계

  • Kim, Byung-In;Kim, Kwang-Soo
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.20 no.3
    • /
    • pp.35-53
    • /
    • 1994
  • Orthographic views ore traditionally used for engineering drawings. This paper presents a methodology for 3D parametric design using orthographic views. The parametric design technique, which is used to design 2D orthographic views, is based on production rules. In the production rule-base, several view interrelation rules and over 50 geometric rules are included. An efficient algorithm is also developed to expedite the reasoning process. For 3D object construction from orthographic views, the approach known as bottom-up geometrical approach is used. The approach consists of 4 steps : 1) generation of wire-frame, 2) construction of face from wire frame, 3) formation of 3D subobjects from faces, and 4) construction of final 3D objects. Curvilinear solids as well as planar solids can be constructed. A method of converting existing 2D CAD data to parametric 3D CAD data is also presented.

  • PDF

Tectonic Strategies in Architectonic Fashion Design (건축적 패션 디자인의 구조적 전략)

  • Yim, Eunhyuk
    • Journal of Fashion Business
    • /
    • v.18 no.1
    • /
    • pp.164-181
    • /
    • 2014
  • As the boundary between fashion and architecture is getting blurred, the interactions of the two fields are turning out abundant as well as essential. This study investigates the tectonic strategies in architectural fashion design as a novel aesthetic in the 21st century by combining literary survey and case analysis on architecture and contemporary fashion. The tectonic strategies in the works of architectural fashion designers were categorized as follows: organic geometry, technological garment construction, and independent space. Organic geometry transforms basic geometric shapes into subtle organic forms after being thrown on the body. Technological garment construction explores the garment structure and volume by applying the structural principle of suspension and fractal geometry. Independent space refers to maintaining the firm three-dimensionality of garment structure which keeps the distance from the body, assuming the similarity to architecture.

A Study on the Improvement of Estimation Method of an Appraisal Standard to Select of the Subject in VE. (VE 대상선정을 위한 평가기준 중요도 산정방법 개선에 관한 연구)

  • Kwon Byoung Suk;Lee Dong Jun;Chun Jae Youl
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • autumn
    • /
    • pp.291-294
    • /
    • 2001
  • This study has established an appraisal standard to select VE subject when they evaluate of design VE by using of a qualify model in an early design step and has suggested an improvement method for importance's estimation method of an appraisal standard. An importance's estimation method is to arrangement of geometric average method using an AHP method to this study, When an evaluation of a quality model, we estimate an importance by establishing of an appraisal standard of economics, construction, security, environmental influence, maintenance, etc.

  • PDF

A Study on the Stress Control Technique of Tensegrity Structures (Tensegrity구조물의 장력제어 기법에 관한 연구)

  • 김승덕;정을석
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.10a
    • /
    • pp.285-292
    • /
    • 2003
  • The soft structure can make large space more effectively, and its construction is easy and simple as well. However, it is not easy to realize this in the actual space. Therefore, two works are needed to be done for effective and accurate construction of soft structures. First, making a working scenario to complete the final objective form; second revising construction errors occurred in the middle of the actual works. These works are called constructional analysis. At this time, geometric nonlinearity should be considered to reflect the sensitivity by the initial stress of flexible structures, constructional analysis comes down to a nonlinear problem after all. This study approaches nonlinear constructional analysis with the numerical method for adjusting stress of cable-dome structures which are a soft structure system, and then verifies it.

  • PDF

The Approximate Realization of Ab$\={u}$ Sahl's Geometric Construction about a Heptagon through GSP using Conic Sections (이차곡선을 활용한 정칠각형에 관한 Ab$\={u}$ Sahl의 작도법의 GSP를 통한 재조명)

  • Kim, Hyang-Sook;Pak, Jin-Suk;Ha, Hyoung-Soo
    • The Mathematical Education
    • /
    • v.50 no.2
    • /
    • pp.233-246
    • /
    • 2011
  • The geometry field in the current high school curriculum deals mainly with analytic geometry and the reference to logic geometry leaves much to be desired. This study investigated the construction on a heptagon by using conic sections as one of measures for achieving harmony between analytic geometry and logic geometry in the high school curriculum with the Geometer's Sketchpad(GSP), which is a specialized software prevalent in mathematics education field and is intended to draw an educational suggestion on it.

Nonlinear vibration analysis of a type of tapered cantilever beams by using an analytical approximate method

  • Sun, Weipeng;Sun, Youhong;Yu, Yongping;Zheng, Shaopeng
    • Structural Engineering and Mechanics
    • /
    • v.59 no.1
    • /
    • pp.1-14
    • /
    • 2016
  • In this paper, an alternative analytical method is presented to evaluate the nonlinear vibration behavior of single and double tapered cantilever beams. The admissible lateral displacement function satisfying the geometric boundary conditions of a single or double tapered cantilever beam is derived by using Rayleigh-Ritz method. Based on the Lagrange method and the Newton Harmonic Balance (NHB) method, analytical approximate solutions in closed and explicit form are obtained. These approximate solutions show excellent agreement with those of numeric method for small as well as large amplitude. Moreover, due to brevity of expressions, the present analytical approximate solutions are convenient to investigate effects of various parameters on the large amplitude vibration response of tapered beams.

A Study on the Concrete Extrusion Method for Precision FCP Fabrication (정밀한 FCP 제작을 위한 콘크리트 압출 방식 연구)

  • Kim, Hye-Kwon;Kim, Ji-Hye;Kim, Sungjin;Lee, Donghoon
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.11a
    • /
    • pp.133-134
    • /
    • 2023
  • Free-form buildings have a curved shape and are composed of geometric shapes, which require high precision. Therefore, this study proposed a new extrusion method, a piston method, that improves the precision of FCP by automatically extruding a predetermined amount of concrete by improving the aforementioned limitations. The technology to extrude a predetermined amount of concrete by applying pistons is expected to shorten construction period and increase economic efficiency by improving the precision and productivity of free-form panels.

  • PDF

Analysis of Geometric Shape and Displacement in Coastal Structure (해안 구조물의 기하형상과 변위 해석)

  • Mun, Do-Yeoul;Baek, Tae-Kyung;Lee, Tack-Gon;Lee, Sung-Su
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.15 no.4
    • /
    • pp.114-123
    • /
    • 2012
  • This study is aimed to assess the stability of cable bridge by determining the geometric shape of the suspension bridge among the domestic coastal structures in public use after their completion of construction and the displacement of the target suspension bridge after public use. For this purpose, this study calculated the length between pylon piers for each period, sag, sag ratio and the displacement of pylon. Compared to the management standards for each step across different pylon behaviors of the target suspension bridge, this study found that the target suspension bridge behaves stably within the maintenance standards. To identify the behaviors of a suspension bridge accurately, the priority is put on the determination of geometric shape. Therefore, it is required to determine the surveyed shape model on a regular basis across public use period and increased traffics, which is expected to contribute considerably to ensuring the stability of the suspension bridge in its maintenance.