• Title/Summary/Keyword: Geobacillus

Search Result 48, Processing Time 0.022 seconds

Mathematical Models for the Biofilm Formation of Geobacillus and Anoxybacillus on Stainless Steel Surface in Whole Milk

  • Karaca, Basar;Buzrul, Sencer;Cihan, Arzu Coleri
    • Food Science of Animal Resources
    • /
    • v.41 no.2
    • /
    • pp.288-299
    • /
    • 2021
  • Biofilm formation of Geobacillus thermodenitrificans, Geobacillus thermoglucosidans and Anoxybacillus flavithermus in milk on stainless steel were monitored at 55℃, 60℃, and 65℃ for various incubation times. Although species of Geobacillus showed a rapid response and produced biofilm within 4 h on stainless steel, a delay (lag time) was observed for Anoxybacillus. A hyperbolic equation and a hyperbolic equation with lag could be used to describe the biofilm formation of Geobacillus and Anoxybacillus, respectively. The highest biofilm formation amount was obtained at 60℃ for both Geobacillus and Anoxybacillus. However, the biofilm formation rates indicated that the lowest rates of formation were obtained at 60℃ for Geobacillus. Moreover, biofilm formation rates of G. thermodenitrificans (1.2-1.6 Log10CFU/mL∙h) were higher than G. thermoglucosidans (0.4-0.7 Log10CFU/mL∙h). Although A. flavithermus had the highest formation rate values (2.7-3.6 Log10CFU/mL∙h), this was attained after the lag period (4 or 5 h). This study revealed that modeling could be used to describe the biofilm formation of thermophilic bacilli in milk.

Characterization of the Thermophilic Bacterium Geobacillus sp. Strain GWE1 Isolated from a Sterilization Oven

  • Correa-Llanten, Daniela;Larrain-Linton, Juanita;Munoz, Patricio A.;Castro, Miguel;Boehmwald, Freddy;Blamey, Jenny M.
    • Microbiology and Biotechnology Letters
    • /
    • v.41 no.3
    • /
    • pp.278-283
    • /
    • 2013
  • A gram-positive, rod-shaped, spore-forming, motile thermophilic bacterium was isolated from a sterilization oven. The microorganism GWE1, formally named Geobacillus wiegelii identified as a member of the genus Geobacillus. GWE1 grew under aerobic conditions of between $60-80^{\circ}C$ (optimum $670^{\circ}C$), in a pH range of 3.0-8.0 (optimum $pH^{70^{\circ}C}$ 5.8), and between 0 and 2 M NaCl (optimum 0.3 M). The membrane polar lipids were dominated by branched saturated fatty acids, which included as the major constituents; iso-15:0 (13.3%), 16:1(${\omega}7$) (12.8%), 16:0 (28.5%), iso-17:0 (13.5%) and anteiso-17:0 (12.3%). The DNA G+C content was 47.2 mol% (determined by HPLC). The 16S rRNA gene sequence of GWE1 showed a high similarity with Geobacillus caldoxylosilyticus (97%). However, the level of DNA-DNA relatedness was only 58%. These data suggest that GWE1 is probably a novel specie of the genus Geobacillus.

Evaluation of Arabinofuranosidase and Xylanase Activities of Geobacillus spp. Isolated from Some Hot Springs in Turkey

  • Sabriye, Canakci;Inan, Kadriye;Murat, Kacagan;Belduz, Ali Osman
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.8
    • /
    • pp.1262-1270
    • /
    • 2007
  • Some hot springs located in the west of Turkey were investigated with respect to the presence of thermophilic microorganisms. Based on phenotyping characteristics and 16S rRNA gene sequence analysis, 16 of the isolates belonged to the genus Geobacillus and grew optimally at about $60^{\circ}C$ on nutrient agar. 16S rRNA gene sequence analysis showed that these isolates resembled Geobacillus species by ${\ge}97%$, but SDS-PAGE profiles of these 16 isolates differ from some of the other species of the genus Geobacillus. However, it is also known that analysis of 16S rRNA gene sequences may be insufficient to distinguish between some species. It is proposed that recN sequence comparisons could accurately measure genome similarities for the Geobacillus genus. Based on recN sequence analysis, isolates 11, IT3, and 12 are strains of G stearothermophilus; isolate 14.3 is a strain of G thermodenitrificans; isolates 9.1, IT4.1, and 4.5 are uncertain and it is required to make further analysis. The presence of xylanase and arabinofuranosidase activities, and their optimum temperature and pH were also investigated. These results showed that 7 of the strains have both xylanase and arabinofuranosidase activities, 4 of them has only xylanase, and the remaning 5 strains have neither of these activities. The isolates 9.1, 7.1, and 3.3 have the highest temperature optima ($80^{\circ}C$), and 7.2, 9.1, AO4, 9.2, and AO17 have the highest pH optima (pH 8) of xylanase. Isolates 7.2, AO4, AC15, and 12 have optimum arabinofuranosidase activities at $75^{\circ}C$, and only isolate AC15 has the lowest pH of 5.5.

Culture Conditions of Geobacillus kaustophilus DSM 7263 for Production of Thermophilic Extracellular Lipase (내열성 extracellular lipase 생산을 위한 Geobacillus kaustophilus DSM 7263의 배양조건)

  • Jeon, Sung-Jong;Kang, Hyun-Woo
    • Journal of Life Science
    • /
    • v.20 no.6
    • /
    • pp.902-906
    • /
    • 2010
  • A producer of thermophilic extracellular lipase, Geobacillus kaustophilus DSM 7263, was selected from various microorganisms of the Geobacillus genus. We investigated optimum conditions for mass production of G. kaustophilus lipase. Among the different natural oil media, olive oil was optimal for enzyme production. The maximum amount of enzyme production was obtained when G. kaustophilus was grown in a medium containing 0.5% olive oil as a carbon source. The pH and temperature for optimal growth were pH 8.0 and $55^{\circ}C$, respectively, while the optimum pH and temperature for lipase production were pH 6.0 and $50^{\circ}C$, respectively. In the presence of $Mg^{2+}$ and $Mn^{2+}$, lipase production was dramatically enhanced by 247% and 157%, respectively, whereas enzyme production was inhibited by $Zn^{2+}$, $Cu^{2+}$, and $Cd^{2+}$. The addition of 0.1% (v/v) triton X-100 increased lipase production and cell growth when compared to the negative control.

Culture Conditions for Improving Extracellular Lipolytic Enzyme Production by a Novel Thermophilic Geobacillus sp. AR1 (신규 고온성 Geobacillus sp. AR1의 extracellular 지질분해효소 생산을 위한 배양조건)

  • Park, Su-Jin;Jeon, Sung-Jong
    • Journal of Life Science
    • /
    • v.23 no.1
    • /
    • pp.110-115
    • /
    • 2013
  • A microorganism (strain AR1) producing an extracellular lipolytic enzyme was isolated from hot springs located in Beppu, Japan. Phylogenetic analysis based on the 16S rDNA sequence and biochemical studies indicated that AR1 belongs to the genus Geobacillus. This study focused on novel strategies to increase extracellular lipolytic enzyme production by this novel Geobacillus sp. AR1. Cultures of the AR1 strain grew within a wide temperature range (from 35 to $75^{\circ}C$); the optimum temperature was $65^{\circ}C$. The pH for optimal growth was 6.5, whereas the optimum pH for lipolytic enzyme production was 8.5. The presence of oils in the culture medium led to improvements in lipolytic enzyme activity. Soybean oil was the most efficient inducer, and it yielded better results when added in the exponential phase. On the other hand, the addition of chemical surfactants led to lipolytic enzyme production. Their addition to the culture could affect the location of the enzyme activity. The addition of Tween 20 in the stationary phase significantly increased the proportion of the extracellular enzyme activity. According to the results, following the addition of soybean oil and Tween 20 in the exponential and stationary phases, the extracellular lipolytic activity was increased 2.4-fold compared with that of a control.

Coproduction of Thermostable Amylase and ${\beta}$-Galactosidase Enzymes by Geobacillus stearothermophilus SAB-40: Application of Plackett-Burman Design to Evaluate Culture Requirements Affecting Enzyme Production

  • Soliman, Nadia A.
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.4
    • /
    • pp.695-703
    • /
    • 2008
  • A locally isolated thermophile, Geobacillus sp. SAB-40, producing thermostable extracellular amylase constitutively and an induced intracellular ${\beta}$-galactosidase was characterized and identified based on 16S rRNA sequencing. A phylogenetic analysis then revealed its closeness to Geobacillus stearothermophilus. To evaluate the effect of the culture conditions on the coproduction of both enzymes by G stearothermophilus SAB-40, a Plackett-Burman fractional factorial design was applied to determine the impact of twenty variables. Among the tested variables, $CaCI_2$, the incubation time, $MgSO_4{\cdot}7H_2O$, and tryptone were found to be the most significant for encouraging amylase production. Lactose was found to promote ${\beta}$-galactosidase production, whereas starch had a significantly negative effect on lactase production. Based on a statistical analysis, a preoptimized medium attained the maximum production of amylase and ${\beta}$-galactosidase at 23.29 U/ml/ min and 12,958 U/mg biomass, respectively, which was 3-and 2-fold higher than the yield of amylase and lactase obtained with the basal medium, respectively.

Genetic Transformation of Geobacillus kaustophilus HTA426 by Conjugative Transfer of Host-Mimicking Plasmids

  • Suzuki, Hirokazu;Yoshida, Ken-Ichi
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.9
    • /
    • pp.1279-1287
    • /
    • 2012
  • We established an efficient transformation method for thermophile Geobacillus kaustophilus HTA426 using conjugative transfer from Escherichia coli of host-mimicking plasmids that imitate DNA methylation of strain HTA426 to circumvent its DNA restriction barriers. Two conjugative plasmids, pSTE33T and pUCG18T, capable of shuttling between E. coli and Geobacillus spp., were constructed. The plasmids were first introduced into E. coli BR408, which expressed one inherent DNA methylase gene (dam) and two heterologous methylase genes from strain HTA426 (GK1380-GK1381 and GK0343-GK0344). The plasmids were then directly transferred from E. coli cells to strain HTA426 by conjugative transfer using pUB307 or pRK2013 as a helper plasmid. pUCG18T was introduced very efficiently (transfer efficiency, $10^{-5}-10^{-3}\;recipient^{-1}$). pSTE33T showed lower efficiency ($10^{-7}-10^{-6}\;recipient^{-1}$) but had a high copy number and high segregational stability. Methylase genes in the donor substantially affected the transfer efficiency, demonstrating that the host-mimicking strategy contributes to efficient transformation. The transformation method, along with the two distinguishing plasmids, increases the potential of G. kaustophilus HTA426 as a thermophilic host to be used in various applications and as a model for biological studies of this genus. Our results also demonstrate that conjugative transfer is a promising approach for introducing exogenous DNA into thermophiles.

Biotransformation of Eugenol via Protocatechuic Acid by Thermophilic Geobacillus sp. AY 946034 Strain

  • Giedraityte, Grazina;Kalediene, Lilija
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.4
    • /
    • pp.475-482
    • /
    • 2014
  • The metabolic pathway of eugenol degradation by thermophilic Geobacillus sp. AY 946034 strain was analyzed based on the lack of data about eugenol degradation by thermophiles. TLC, GC-MS, and biotransformation with resting cells showed that eugenol was oxidized through coniferyl alcohol, and ferulic and vanillic acids to protocatechuic acid before the aromatic ring was cleaved. The cell-free extract of Geobacillus sp. AY 946034 strain grown on eugenol showed a high activity of eugenol hydroxylase, feruloyl-CoA synthetase, vanillate-O-demethylase, and protocatechuate 3,4-dioxygenase. The key enzyme, protocatechuate 3,4-dioxygenase, which plays a crucial role in the degradation of various aromatic compounds, was purified 135-fold to homogeneity with a 34% overall recovery from Geobacillus sp. AY 946034. The relative molecular mass of the native enzyme was about $450{\pm}10$ kDa and was composed of the non-identical subunits. The pH and temperature optima for enzyme activity were 8 and $60^{\circ}C$, respectively. The half-life of protocatechuate 3,4-dioxygenase at the optimum temperature was 50 min.

Purification of \alpha-Cyclodextrin Glucanotransferase Excreted from Themophilic Geobacillus thermosac-chalytycus and Characterization of Transglycosylation Reaction of Glucosides. (호열성 Geobacillus thermosacchalytycus가 생산하는 \alpha-Cyclodextrin Glucanotransferase의 분리정제와 당전이 반응 특성)

  • 이미숙;신현동;김태권;이용현
    • Microbiology and Biotechnology Letters
    • /
    • v.32 no.1
    • /
    • pp.29-36
    • /
    • 2004
  • $\alpha$-Cyclodextrin glucanotransferase excreted from a newly isolated Geobacillus thermosacchalytycus was purified through the ultrafiltraion, hydrophobic Sepharose CD-4B affinity chromatography, and gel filtration on Sephadex G-75, respectively. The molecular weight of the purified CGTase was 69 kDa and its N-terminal amino acid sequence was determined to be Asn-Leu-Asn-Lys-Val-Asn-Phe-Val-Ser-Asp-Val-Val-Val-Gln-Ile. The optimum pH and temperature were pH 6.0 and$ 60^{\circ}C$, respectively, and stably at the pH range of 6.0-8.0 and $60^{\circ}C$ in the presence of $Ca^{++}$. The excreted CGTase from the thermophilic G. thermosacchalytycus was $\alpha$-type showing a high coupling activity for the transglycosylation on various glucosides. The coupling reaction was carried out according to the random ternary complex mechanism.m.

Effects of Iron-Reducing Bacteria on Carbon Steel Corrosion Induced by Thermophilic Sulfate-Reducing Consortia

  • Valencia-Cantero, Eduardo;Pena-Cabriales, Juan Jose
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.2
    • /
    • pp.280-286
    • /
    • 2014
  • Four thermophilic bacterial species, including the iron-reducing bacterium Geobacillus sp. G2 and the sulfate-reducing bacterium Desulfotomaculum sp. SRB-M, were employed to integrate a bacterial consortium. A second consortium was integrated with the same bacteria, except for Geobacillus sp. G2. Carbon steel coupons were subjected to batch cultures of both consortia. The corrosion induced by the complete consortium was 10 times higher than that induced by the second consortium, and the ferrous ion concentration was consistently higher in iron-reducing consortia. Scanning electronic microscopy analysis of the carbon steel surface showed mineral films colonized by bacteria. The complete consortium caused profuse fracturing of the mineral film, whereas the non-iron-reducing consortium did not generate fractures. These data show that the iron-reducing activity of Geobacillus sp. G2 promotes fracturing of mineral films, thereby increasing steel corrosion.