Browse > Article
http://dx.doi.org/10.4014/jmb.1309.09069

Biotransformation of Eugenol via Protocatechuic Acid by Thermophilic Geobacillus sp. AY 946034 Strain  

Giedraityte, Grazina (Department of Microbiology and Biotechnology, Faculty of Natural Sciences, Vilnius University)
Kalediene, Lilija (Department of Microbiology and Biotechnology, Faculty of Natural Sciences, Vilnius University)
Publication Information
Journal of Microbiology and Biotechnology / v.24, no.4, 2014 , pp. 475-482 More about this Journal
Abstract
The metabolic pathway of eugenol degradation by thermophilic Geobacillus sp. AY 946034 strain was analyzed based on the lack of data about eugenol degradation by thermophiles. TLC, GC-MS, and biotransformation with resting cells showed that eugenol was oxidized through coniferyl alcohol, and ferulic and vanillic acids to protocatechuic acid before the aromatic ring was cleaved. The cell-free extract of Geobacillus sp. AY 946034 strain grown on eugenol showed a high activity of eugenol hydroxylase, feruloyl-CoA synthetase, vanillate-O-demethylase, and protocatechuate 3,4-dioxygenase. The key enzyme, protocatechuate 3,4-dioxygenase, which plays a crucial role in the degradation of various aromatic compounds, was purified 135-fold to homogeneity with a 34% overall recovery from Geobacillus sp. AY 946034. The relative molecular mass of the native enzyme was about $450{\pm}10$ kDa and was composed of the non-identical subunits. The pH and temperature optima for enzyme activity were 8 and $60^{\circ}C$, respectively. The half-life of protocatechuate 3,4-dioxygenase at the optimum temperature was 50 min.
Keywords
Thermophilic bacteria; eugenol; protocatechuate 3,4-dioxygenase; purification; metabolism;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Srivastava S, Luqman S, Khan F, Chanotiya ChS, Darokar MP. 2010. Metabolic pathway reconstruction of eugenol to vanillin bioconversion in Aspergillus niger. 4: 320-325.   DOI
2 Sterjiades R, Pelmont J. 1989. Occurance of two different forms of protocatechuate 3,4-dioxygenase in a Moraxella sp. Appl. Environ. Microbiol. 55: 340-347.
3 Tadasa K. 1987. Degradation of eugenol by a microorganism. Agric. Biol. Chem. 41: 925-929.
4 Unno T, Kim SJ, Kanaly R, Ahn JH, Kang SI, Hur HG. 2007. Metabolic characterization of newly isolated Pseudomonas nitroreducens Jin1 growing on eugenol and isoeugenol. J. Agric. Food Chem. 55: 8556-8561.   DOI   ScienceOn
5 Xu P, Hua D, Ma C. 2007. Microbial transformation of propenylbenzenes for natural flavour production. Trends Biotechnol. 25: 571-576.   DOI   ScienceOn
6 Zamzuri NA, Abd-Aziz S. 2013. Biovanillin from agro wastes as an alternative food flavour. J. Sci. Food Agric. 93: 429-438.   DOI   ScienceOn
7 Zhang J, Zhang X, Liu J, Li R, Shen B. 2012. Isolation of thermophilic bacterium, Geobacillus sp. SH-1, capable of degrading aliphatic hydrocarbons and naphthalene simultaneously, and identification of its naphthalene degradation pathway. Bioresour. Technol. 124: 83-89.   DOI   ScienceOn
8 Zhang Y, Xu P, Han Sh, Yan H, Ma C. 2006. Metabolism of isoeugenol via isoeugenol-diol by a newly isolated strain of Bacillus subtilis HS8. Appl. Microbiol. Biotechnol. 73: 771-779.   DOI
9 Aoki K, Shinke R, Konohama T, Nishira H. 1984. Purification and characterization of catechol 1,2-dioxygenase from anilineassimilating Rhodococcus erythropolis An-13. Agric. Biol. Chem. 48: 2087-2095.   DOI
10 Bradford MM. 1976. A rapid and sensitive method for quantitation of protein utilizing the principle of proteindye binding. Anal. Biochem. 72: 248-254.   DOI   ScienceOn
11 Brandt K, Thewes S, Overhage J, Priefert H, Steinbuchel A. 2001. Characterization of eugenol hydroxylase genes (ehyA/ ehyB) from the new eugenol degrading Pseudomonas sp. strain OPS1. Appl. Microbiol. Biotechnol. 56: 724-730.   DOI
12 Bubinas A, Giedraityte G, Kalediene L. 2007. Protocatechuate 3,4-dioxygenase from thermophilic Geobacillus sp. bacterium. Biologija 1: 31-34.
13 Bubinas A, Giedraityte G, Kalediene L, Nivinskiene O, Butkiene R. 2008. Degradation of naphthalene by thermophilic bacteria via a pathway, through protocatechuic acid. Cent. Eur. J. Biol. 1: 61-68.
14 Bustard MT, Whiting S, Cowan DA, Wright PC. 2002. Biodegradation of high-concentration isopropanol by a solvent-tolerant thermophile, Bacillus pallidus. Extremophiles 6: 319-323.   DOI   ScienceOn
15 Chen CL, Chang HM, Kirk T. 1982. Aromatic acids produced during degradation of lignin in spruce wood by Phanerochaete chrysosporium. Holzforschung 36: 3-9.   DOI
16 Civolani C, Barghini P, Roncetti AR, Ruzzi M, Schiesser A. 2000. Bioconversion of ferulic acid into vanillic acid by means of a vanillate-negative mutant of Pseudomonas fluorescens strain BF13. Appl. Environ. Microbiol. 66: 2311-2317.   DOI
17 Furukava H, Nagasawa T. 1998. Novel double bondtransferring hydroxylation reactions in microbial metabolism of eugenol. Ann. NY Acad. Sci. 864: 81-86.   DOI
18 Furukawa H, Wieser M, Morita H, Sugio T, Nagasawa T. 1998. Purification and characterization of eugenol dehydrogenase from Pseudomonas fluorescens E118. Arch. Microbiol. 171: 37-43.   DOI
19 Moriello SV, Lama L, Poli A, Gugliandolo C, Maugeri TL, Gamacorta A, Nicolous B. 2003. Production of exopolysaccharides from a thermophilic microorganism isolated from a marine hot spring in flegrean areas. J. Ind. Microbiol. Biotechnol. 30: 95-101.   DOI
20 Morawski B, Segura A, Orston LN. 2000. Substrate range and genetic analysis of Acinetobacter vanillate demethylase. J. Bacteriol. 182: 1383-1389.   DOI   ScienceOn
21 Muheim A, Lerch K. 1999. Towards a high-yield bioconversion of ferulic acid to vanillin. Appl. Microbiol. Biotechnol. 51: 456-461.   DOI   ScienceOn
22 Overhage J. 1999. Biotransformation of eugenol to vanillin by mutant of Pseudomonas sp. strain HR 199. Appl. Microbiol. Biotechnol. 52: 820-828.   DOI   ScienceOn
23 Overhage J, Priefert H, Steinbuchel A. 1999. Biochemical and genetic analysis of ferulic acid catabolism in Pseudomonas sp. strain HR 199. Appl. Environ. Microbiol. 65: 4837-4847.
24 Priefert H, Overhage J, Steinbuchel A. 1999. Identification and molecular characterization of eugenol hydroxylase genes of Pseudomonas sp. strain HR 199. Arch. Microbiol. 172: 354-363.   DOI
25 Priefert H, Steinbuchel A. 2001. Biotechnological production of vanillin. Appl. Microbiol. Biotechnol. 56: 296-314.   DOI
26 Scaramal SA, Jacques RJ, Andreazza R, Bento FM, Camargo FAO. 2013. The effect of trace elements, cations and environment conditions on protocatechuate 3,4-dioxygenase activity. Sci. Agric. 70: 68-73.   DOI
27 Sim HW, Jung M, Cho YK. 2013. Purification and characterization of protocatechuate 3,4-dioxygenase from Pseudomonas pseudoalcaligenes KF707. J. Korean Soc. Appl. Biol. Chem. 56: 401-408.   DOI
28 Han D, Ryn J-Y, Lee H, Hur H-G. 2013. Bacterial biotransformation of phenylpropanoid compounds for producing flavor and fragrance. J. Korean Soc. Appl. Biol. Chem. 56: 125-133.   DOI
29 De Jang E, Van Berkel WJH, Van der Zwan RP, De Bont JAM. 1992. Purification and characterization of vanillyl-alcohol oxidase from Penicillium simplicissimum: a novel aromatic alcohol oxidase containing covalently bound FAD. Eur. J. Biochem. 208: 651-657.   DOI   ScienceOn
30 Iwagami SG, Yang K, Davies J. 2000. Characterization of the protocatechuic acid catabolic gene cluster from Streptomyces sp. strain 2065. Appl. Environ. Microbiol. 66: 1499-1508.   DOI
31 Jin J, Mazon H, Heuvel R, Janssen D. 2007. Discovery of a eugenol oxidase from Rhodococcus sp. strain RHA1. FEBS J. 274: 2311-2321.   DOI   ScienceOn
32 Kadakol JC, Kamanavali ChM. 2010. Biodegradation of eugenol by Bacillus cereus strain PN24. E. J. Chem. 7: 474-480.   DOI
33 Karmakar B, Vohra RM, Nandanwar H, Sharma P, Gupta KG, Sobti RC. 2000. Rapid degradation of ferulic acid via 4- vinylquajacol and vanilin by a newly isolated strain of Bacillus coagulans. J. Biotechnol. 80: 195-202.   DOI   ScienceOn
34 Kaur B, Chakraborty D. 2013. Biotechnological and molecular approaches for vanillin production: a review. Appl. Biochem. Biotechnol. 169: 1353-1372.   DOI   ScienceOn
35 Laemmli UK. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage. Nature 227: 680-685.   DOI   ScienceOn
36 McMullan G, Christie JM, Rahman TJ, Banat IM, Marchant R. 2004. Habitat, applications and genomics of the aerobic, thermophilic genus Geobacillus. Biochem. Soc. Trans. 32: 214-217.   DOI   ScienceOn
37 Milo RE, Duffiner FM, Muller R. 1999. Catechol 2,3- dioxygenase from thermophilic, phenol-degrading Bacillus thermoleovorans strain A2 has unexpected low thermal stability. Extremophiles 3: 185-190.   DOI   ScienceOn
38 Sindhwani G, Uk I, Aeri V. 2012. Microbial transformation of eugenol to vanillin. J. Microbiol. Biotech. Res. 2: 313-318.
39 Rabenhorst J. 1996. Production of methoxyphenol type natural aroma chemicals by biotransformation of eugenol with a new Pseudomonas sp. Appl. Microbiol. Biotechnol. 46: 470-474.   DOI