Browse > Article

Coproduction of Thermostable Amylase and ${\beta}$-Galactosidase Enzymes by Geobacillus stearothermophilus SAB-40: Application of Plackett-Burman Design to Evaluate Culture Requirements Affecting Enzyme Production  

Soliman, Nadia A. (Mubarak City for Scientific Research and Technology Applications, Genetic Engineering and Biotechnology Research Institute, Bioprocess Development Department, New Burg El-Arab City, Universities and Research Institutes Zone)
Publication Information
Journal of Microbiology and Biotechnology / v.18, no.4, 2008 , pp. 695-703 More about this Journal
Abstract
A locally isolated thermophile, Geobacillus sp. SAB-40, producing thermostable extracellular amylase constitutively and an induced intracellular ${\beta}$-galactosidase was characterized and identified based on 16S rRNA sequencing. A phylogenetic analysis then revealed its closeness to Geobacillus stearothermophilus. To evaluate the effect of the culture conditions on the coproduction of both enzymes by G stearothermophilus SAB-40, a Plackett-Burman fractional factorial design was applied to determine the impact of twenty variables. Among the tested variables, $CaCI_2$, the incubation time, $MgSO_4{\cdot}7H_2O$, and tryptone were found to be the most significant for encouraging amylase production. Lactose was found to promote ${\beta}$-galactosidase production, whereas starch had a significantly negative effect on lactase production. Based on a statistical analysis, a preoptimized medium attained the maximum production of amylase and ${\beta}$-galactosidase at 23.29 U/ml/ min and 12,958 U/mg biomass, respectively, which was 3-and 2-fold higher than the yield of amylase and lactase obtained with the basal medium, respectively.
Keywords
Thermostable amylase; galactosidase; Geobacillus; experimental design; optimization;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By Web Of Science : 2  (Related Records In Web of Science)
연도 인용수 순위
1 Chen, Q. H., G. Q. He, and M. A. M. Ali. 2002. Optimization of medium composition for the production of elastase by Bacillus sp. EL31410 with response surface methodology. Enzyme Microb. Technol. 30: 667-672   DOI   ScienceOn
2 Fogarty, W. M. and C. T. Kelly. 1990. In W. M. Fogarty and C. T. Kelly (eds.), Microbial Enzyme and Biotechnology, pp. 7- 132, 2th Ed. Elsevier Science, London
3 Huber, R. E., G. Kurz, and K. Wallenfels. 1976. A quantitation of the factors which affect the hydrolase and transgalactosylase activities of $\beta$-galactosidase (E. coli) on lactose. Biochemistry 15: 1994-2001   DOI   ScienceOn
4 Jin, F., Y. Li, C. Zhang, and H. Yu. 2001. Thermostable $\alpha$- amylase and $\alpha$-galactosidase production from the thermophilic and aerobic Bacillus sp. JF strain. Process Biochem. 36: 559- 564   DOI
5 Konsoula, Z. and M. Liakopoulou-Kyriakides. 2007. Coproduction of $\alpha$-amylase and $\beta$-galactosidase by Bacillus subtilis in complex organic substrates. Bioresour. Technol. 98: 150-157   DOI   ScienceOn
6 Mamo, G., B. A. Gashe, and A. Gessesse. 1999. A highly thermostable amylase from a newly isolated thermophilic Bacillus sp. WN11. J. Appl. Microbiol. 86: 557-560   DOI   ScienceOn
7 Nakao, M., M. Harada, Y. Kodama, T. Nakayama, Y. Shibano, and T. Amachi. 1994. Purification and characterization of a thermostable $\beta$-galactosidase with high transgalactosylation activity from Saccharopolyspora rectivirgula. Appl. Microbiol. Biotechnol. 40: 657-663   DOI   ScienceOn
8 Pandey, A. 1992. Recent developments in process solid-state fermentation. Process Biochem. 27: 109-117   DOI
9 Patel, G. B. and C. R. Mackenzie. 1985. Properties and potential advantages of $\beta$-galactosidase from Bacteriodes polyprogmatus. Appl. Microbiol. Biotechnol. 22: 114-120
10 Shaw, J.-F., F.-P. Lin, S.-C. Chen, and H.-C. Chen. 1995. Purification and properties of an extracellular $\alpha$-amylase from Thermus sp. Bot. Bull. Acad. Sin. 36: 195-200
11 Tonkova, A., R. Manolov, and E. Dobreva. 1993. Thermostable $\alpha$-amylase from derepressed Bacillus licheniformis produced in high yields from glucose. Process Biochem. 28: 539-542   DOI
12 Vasiljevic, T. and P. Jelen. 2001. Production of $\beta$-galactosidase for lactose hydrolysis in milk and dairy products using thermophilic lactic acid bacteria. Innovative Food Sci. Emerg. Technol. 2: 75-85   DOI   ScienceOn
13 Plackett, R. L. and J. P. Burman. 1946. The design of optimum multifactorial experiments. Biometrika 33: 305-325   DOI   ScienceOn
14 Lind, D. L. and D. A. Daniel. 1989. $\beta$-Galactosidase from a strain of the anaerobic Thermoanaerobacter. Enzyme Microb. Technol. 11: 180-186   DOI   ScienceOn
15 Batra, N. and J. Singh. 2002. Production and characterization of a thermostable $\beta$-galactosidase from Bacillus coagulans RCS3. Biotechnol. Appl. Biochem. 36: 1-6   DOI   ScienceOn
16 Pedersen, H. and J. Nielsen. 2000. The influence of nitrogen sources on $\alpha$-amylase productivity of Aspergillus oryzae in continuous cultures. Appl. Microbiol. Biotechnol. 53: 278-281   DOI   ScienceOn
17 Dumortier, V., C. Brassart, and S. Bouquelet. 1994. Purification and properties of a $\beta$-D-galactosidase from Bifidobacterium bifidum exhibiting transgalactosylation reaction. Biotechnol. Appl. Biochem. 19: 341-354
18 Fuwa, H. 1954. A new method for microdetermination of amylase activity by the use of amylose as the substrate. J. Biochem. (Tokyo) 41: 583-603   DOI
19 Ghanem, N. B., H. H. Yusef, and H. K. Mahrouse. 2000. Production of Aspergillus terreus xylanase in solid-state cultures: Application of the Plackett-Burman experimental design to evaluate nutritional requirements. Bioresour. Technol. 73: 113- 121   DOI   ScienceOn
20 Lonsane, B. K. and M. V. Ramech. 1990. In S. A. Neidleman (ed.). Advances in Applied Microbiology, Vol. 35, pp. 1-56. Academic Press, New York
21 Srivastava, R. A. K. and J. N. Baruah. 1986. Culture conditions for production of thermostable amylase by Bacillus stearothermophilus. Appl. Environ. Microbiol. 52: 179-184
22 Pandey, A. and P. Nigam. 2000. Advances in microbial amylases. Biotechnol. Appl. Biochem. 31: 135-152   DOI   ScienceOn
23 Yoon, J. I. T. and K. Ajisaka. 1996. The synthesis of galactopyranosyl derivatives with $\beta$-galactosidases of different origins. Carbohydr. Res. 292: 153-163   DOI
24 Bessler, C., J. Schmitt, K.-H. Maurer, and R. Schmid. 2003. Directed evolution of a bacterial $\alpha$-amylase: Toward enhanced pH-performance and higher specific activity. Protein Sci. 12: 2141-2149   DOI   ScienceOn
25 Brady, D. and R. E. Marchant. 1995. Isolation and partial characterization of $\beta$-galactosidase activity produced by a thermostable strain of Kluyveromyces maximas during growth on lactose containing media. Enzyme Microb. Technol. 17: 696-699   DOI   ScienceOn
26 Page, R. D. M. 1986. TREEVIEW: An application to display phylogenetic trees on personal computers. Comput. Appl. Biosci. 12: 357-358
27 Stow, R. A. and R. P. Mayer. 1966. Efficient screening of process variables. Ind. Eng. Chem. 58: 36-40
28 Chang, Y.-N., J.-C. Huang, C.-C. Lee, I.-L. Shih, and Y.-M. Tzeng. 2002. Use of response surface methodology to optimize culture medium for production of lovastatin by Monascus rubber. Enzyme Microb. Technol. 30: 889-894   DOI   ScienceOn
29 Dong, G., C. Vielle, A. Savchenko, and J. G. Zeikus. 1997. Cloning, sequencing, and expression of the gene encoding extracellular $\alpha$-amylase from Pyrococcus furiosus and biochemical characterization of the recombinant enzyme. Appl. Environ. Microbiol. 63: 3569-3576
30 Grueniger, B. and B. Sonnleitner. 1984. Bacterial diversity in thermophilic aerobic sewage sludge. Appl. Microbiol. Biotechnol. 19: 414-421   DOI
31 Li, X., L. Yang, F. Zuo, and F. Jin. 1997. Factors regulating production of $\alpha$-galactosidase from Bacillus sp. JF. Lett. Appl. Microbiol. 24: 1-5   DOI   ScienceOn
32 Fischer, L. and C. Scheckermann. 1995. Purification and characterization of a thermotolerant $\beta$-galactosidase from Thermomyces lanuginosus. Appl. Environ. Microbiol. 61: 1497-1501
33 Pandey, A., P. Nigam, C. R. Soccol, C. T. Soccol, D. Singh, and R. Mohan. 2000. Advances in microbial amylases. Biotechnol. Appl. Biochem. 31: 135-152   DOI   ScienceOn
34 Chang, B. S. and R. Mahoney. 1994. Thermal denaturation of $\beta$-galactosidase from Streptococcus thermophilus and its stabilization by bovine serum albumin. An electrolytic study. Biotechnol. Biochem. 19: 169-178
35 Kochhar, S. and R. D. Dua. 1990. Thermostable liquefying $\alpha$- amylase from Bacillus amyloliquefaciens. Biotechnol. Lett. 12: 393-396   DOI
36 Strobel, R. J. and G. R. Sullivan. 1999. Experimental design for improvement of fermentations, pp. 80-93. In A. L. Demain and J. E. Davies (eds.), Manual of Industrial Microbiology and Biotechnology. ASM Press, Washington
37 Malhotra, R., S. M. Noorwez, and T. Satyanarayana. 2000. Production and partial characterization of thermostable and calcium independent $\alpha$-amylase of an extreme thermophile Bacillus thermoleovorans NP54. Lett. Appl. Microbiol. 31: 378-384   DOI   ScienceOn
38 Suzuki, H., Y. Ozawa, H. Oota, and H. Yoshida. 1969. Studied on the decomposition of raffinose by $\alpha$-galactosidase of mold, Part I. $\alpha$-Galactosidase formation and hydrolysis of raffinose by the enzyme preparation. Agric. Biol. Chem. 33: 506-513   DOI
39 Miller, J. H. 1972. Experiments in Molecular Genetics. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
40 Steppan, D., J. Werner, and B. Yeater. 1999. Essential regression and experimental design in MS Excel-free, user friendly software package for doing multiple linear regression, step-wise regression, polynomial regression, model adequacy checking and experimental design in MS Excel. Available at: http://www.geocities.com/Silicon Valley/Network/1032/
41 Liebl, W., B. Wagner, and J. Schellhase. 1998. Properties of a $\alpha$-galactosidase, and structure of its gene galA, within $\alpha$- and $\beta$- galactoside utilization gene cluster of the hyperthermophilic bacterium Thermotoga maritina. Syst. Appl. Microbiol. 21: 1- 11   DOI
42 Bereaka, M. M., N. A. Soliman, and Y. R. Abdel-Fattah. Production, partial characterization and cloning of thermostable $\alpha$-amylase of a thermophile Geobacillus thermoleovorans YN. Biotechnology 42: 1090-1100
43 Francis, F., A. Sabu, K. Madhavan Nampoothiri, S. Ramachandran, S. Ghosh, G. Szakacs, and A. Pandey. 2003. Use of response surface methodology for optimizing process parameters for the production of $\alpha$-amylase by Aspergillus oryzae. Biochem. Eng. J. 15: 107-115   DOI   ScienceOn
44 Dong, G., C. Vielle, and J. G. Zeikus. 1997. Cloning, sequencing, and expression of the gene encoding amylopullulanase from Pyrococcus furiosus and biochemical characterization of the recombinant enzyme. Appl. Environ. Microbiol. 63: 3577-3584
45 Lim, J. K., H. S. Lee, Y. J. Kim, S. S. Bae, J. H. Jeon, S. G. Kang, and J.-H. Lee. 2007. Critical factors to high thermostability of an $\alpha$-amylase from hyperthermophilic archaeon Thermococcus onnurineus NA1. J. Microbiol. Biotechnol. 17: 1242-1248   과학기술학회마을
46 Onishi, N., A. Yamashiro, and K. Yokozeki. 1995. Production of galactooligosaccharide from lactose by Sterigmatomyces eiviae CBS8119. Appl. Environ. Microbiol. 61: 4022-4025
47 Shaw, A., R. Bott, and A. G. Day. 1999. Protein engineering of $\alpha$-amylase for low pH performance. Curr. Opin. Biotechnol. 10: 349-352   DOI   ScienceOn
48 Fukusumi, S. A., A. Kamizono, S. Horinouchi, and T. Beppu. 1988. Cloning and nucleotide sequence of a heat stable amylase gene from an anaerobic thermophile, Dictyoglomus thermophilum. Eur. J. Biochem. 174: 25-21
49 Furlan, S. and A. Schneider. 2000. Formulation of a lactose-free low cost medium for the production of $\beta$-galactosidase by Kluyveromyces marxiamus. Biotechnol. Lett. 22: 589-593   DOI   ScienceOn
50 Ben Ali, M., S. Mhiri, M. Mezghani, and S. Bejar. 2001. Purification and sequence analysis of a typical maltohexaoseforming $\alpha$-amylase of B. stearothermophilus US100. Enzyme Microb. Technol. 28: 537-542   DOI   ScienceOn
51 El-Helow, E. R., Y. R. Abdel-Fattah, K. M. Ghanem, and E. A. Mohamad. 2000. Application of the response surface methodology for optimizing the activity of an aprE-driven gene expression system in Bacillus subtilis. Appl. Microbiol. Biotechnol. 54: 515-520   DOI   ScienceOn
52 Gowland, P., M. Kernick, and T. K. Sundaram. 1987. Thermophilic bacterial isolates producing lipase. FEMS Microbiol. Lett. 48: 339-343   DOI
53 Konsoula, Z. and M. Liakopoulou-Kyriakides. 2004. Hydrolysis of starches by the action of $\alpha$-amylase from Bacillus subtilis. Process Biochem. 39: 1745-1749   DOI
54 Roychudhury, S., S. J. Parulekar, and W. A. Weigand. 1988. Cell growth and $\alpha$-amylase production characteristics of Bacillus amyloliquefaciens. Biotechnol. Bioeng. 33: 197-206   DOI
55 Tsurikova, N. V., L. I. Nefedova, E. V. Kostyleva, V. I. Zvenigorodskii, V. G. Yasinovskii, T. A. Voeikova, and A. P. Sinitsyn. 2002. Selection of a potent Bacillus licheniformis strain producing thermostable amylase. Appl. Biochem. Microbiol. 38: 427-432   DOI   ScienceOn