Browse > Article
http://dx.doi.org/10.4014/jmb.1203.03023

Genetic Transformation of Geobacillus kaustophilus HTA426 by Conjugative Transfer of Host-Mimicking Plasmids  

Suzuki, Hirokazu (Organization of Advanced Science and Technology, Kobe University)
Yoshida, Ken-Ichi (Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University)
Publication Information
Journal of Microbiology and Biotechnology / v.22, no.9, 2012 , pp. 1279-1287 More about this Journal
Abstract
We established an efficient transformation method for thermophile Geobacillus kaustophilus HTA426 using conjugative transfer from Escherichia coli of host-mimicking plasmids that imitate DNA methylation of strain HTA426 to circumvent its DNA restriction barriers. Two conjugative plasmids, pSTE33T and pUCG18T, capable of shuttling between E. coli and Geobacillus spp., were constructed. The plasmids were first introduced into E. coli BR408, which expressed one inherent DNA methylase gene (dam) and two heterologous methylase genes from strain HTA426 (GK1380-GK1381 and GK0343-GK0344). The plasmids were then directly transferred from E. coli cells to strain HTA426 by conjugative transfer using pUB307 or pRK2013 as a helper plasmid. pUCG18T was introduced very efficiently (transfer efficiency, $10^{-5}-10^{-3}\;recipient^{-1}$). pSTE33T showed lower efficiency ($10^{-7}-10^{-6}\;recipient^{-1}$) but had a high copy number and high segregational stability. Methylase genes in the donor substantially affected the transfer efficiency, demonstrating that the host-mimicking strategy contributes to efficient transformation. The transformation method, along with the two distinguishing plasmids, increases the potential of G. kaustophilus HTA426 as a thermophilic host to be used in various applications and as a model for biological studies of this genus. Our results also demonstrate that conjugative transfer is a promising approach for introducing exogenous DNA into thermophiles.
Keywords
Geobacillus kaustophilus; transformation; mimicking; conjugative transfer; restriction-modification;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By Web Of Science : 1  (Related Records In Web of Science)
연도 인용수 순위
1 Arsene, F., T. Tomoyasu, and B. Bukau. 2000. The heat shock response of Escherichia coli. Int. J. Food Microbiol. 55: 3-9.   DOI   ScienceOn
2 Bart, A., M. W. J. van Passel, K. van Amsterdam, and A. van der Ende. 2005. Direct detection of methylation in genomic DNA. Nucleic Acids Res. 33: e124.   DOI   ScienceOn
3 Bennett, P. M., J. Grinsted, and M. H. Richmond. 1977. Transposition of TnA does not generate deletions. Mol. Gen. Genet. 154: 205-211.   DOI   ScienceOn
4 Cava, F., A. Hidalgo, and J. Berenguer. 2009. Thermus thermophilus as biological model. Extremophiles 13: 213-231.   DOI   ScienceOn
5 Cripps, R. E., K. Eley, D. J. Leak, B. Rudd, M. Taylor, M. Todd, S. Boakes, S. Martin, and T. Atkinson. 2009. Metabolic engineering of Geobacillus thermoglucosidasius for high yield ethanol production. Metab. Eng. 11: 398-408.   DOI   ScienceOn
6 Cuebas, M., D. Sannino, and E. Bini. 2011. Isolation and characterization of an arsenic resistant Geobacillus kaustophilus strain from geothermal soils. J. Basic Microbiol. 51: 364-371.   DOI   ScienceOn
7 De Rossi, E., P. Brigidi, N. E. Welker, G. Riccardi, and D. Matteuzzi. 1994. New shuttle vector for cloning in Bacillus stearothermophilus. Res. Microbiol. 145: 579-583.   DOI   ScienceOn
8 Ehrlich, M., G. G. Wilson, K. C. Kuo, and C. W. Gehrke. 1987. $N^4$-Methylcytosine as a minor base in bacterial DNA. J. Bacteriol. 169: 939-943.   DOI
9 Feng, L., W. Wang, J. Cheng, Y. Ren, G. Zhao, C. Gao, et al. 2007. Genome and proteome of long-chain alkane degrading Geobacillus thermodenitrificans NG80-2 isolated from a deepsubsurface oil reservoir. Proc. Natl. Acad. Sci. USA 104: 5602-5607.   DOI   ScienceOn
10 Figurski, D. H. and D. R. Helinski. 1979. Replication of an origin-containing derivative of plasmid RK2 dependent on a plasmid function provided in trans. Proc. Natl. Acad. Sci. USA 76: 1648-1652.   DOI   ScienceOn
11 Flusberg, B. A., D. R. Webster, J. H. Lee, K. J. Travers, E. C. Olivares, T. A. Clark, et al. 2010. Direct detection of DNA methylation during single-molecule, real-time sequencing. Nat. Methods 7: 461-467.   DOI   ScienceOn
12 Higuchi, R., B. Krummel, and R. K. Saiki. 1988. A general method of in vitro preparation and specific mutagenesis of DNA fragments: Study of protein and DNA interactions. Nucleic Acids Res. 16: 7351-7367.   DOI   ScienceOn
13 Kato, T., A. Miyanaga, S. Kanaya, and M. Morikawa. 2010. Gene cloning and characterization of an aldehyde dehydrogenase from long-chain alkane-degrading Geobacillus thermoleovorans B23. Extremophiles 14: 33-39.   DOI   ScienceOn
14 McMullan, G., J. M. Christie, T. J. Rahman, I. M. Banat, N. G. Ternan, and R. Marchant. 2004. Habitat, applications and genomics of the aerobic, thermophilic genus Geobacillus. Biochem. Soc. Trans. 32: 214-217.   DOI   ScienceOn
15 Miller, J. F., E. Lanka, and M. H. Malamy. 1985. F factor inhibition of conjugal transfer of broad-host-range plasmid RP4: Requirement for the protein product of pif operon regulatory gene pifC. J. Bacteriol. 163: 1067-1073.
16 Nagaraja, V., M. Stieger, C. Nager, S. M. Hadi, and T. A. Bickle. 1985. The nucleoside sequence recognized by the Escherichia coli D type I restriction and modification enzyme. Nucleic Acids Res. 13: 389-399.   DOI   ScienceOn
17 Nakayama, N., I. Narumi, S. Nakamoto, and H. Kihara. 1992. A new shuttle vector for Bacillus stearothermophilus and Escherichia coli. Biotechnol. Lett. 14: 649-652.   DOI   ScienceOn
18 Narumi, I., N. Nakayama, S. Nakamoto, T. Kimura, T. Yanagisawa, and H. Kihara. 1993. Construction of a new shuttle vector pSTE33 and its stabilities in Bacillus stearothermophilus, Bacillus subtilis, and Escherichia coli. Biotechnol. Lett. 15: 815-820.
19 Narumi, I., K. Sawakami, S. Nakamoto, N. Nakayama, T. Yanagisawa, N. Takahashi, and H. Kihara. 1992. A newly isolated Bacillus stearothermophilus K1041 and its transformation by electroporation. Biotechnol. Tech. 6: 83-86.   DOI   ScienceOn
20 Nazina, T. N., T. P. Tourova, A. B. Poltaraus, E. V. Novikova, A. A. Grigoryan, A. E. Ivanova, et al. 2001. Taxonomic study of aerobic thermophilic bacilli: Descriptions of Geobacillus subterraneus gen. nov., sp. nov. and Geobacillus uzenensis sp. nov. from petroleum reservoirs and transfer of Bacillus stearothermophilus, Bacillus thermocatenulatus, Bacillus thermoleovorans, Bacillus kaustophilus, Bacillus thermoglucosidasius and Bacillus thermodenitrificans to Geobacillus as the new combinations G. stearothermophilus, G. thermocatenulatus, G. thermoleovorans, G. kaustophilus, G. thermoglucosidasius and G. thermodenitrificans. Int. J. Syst. Evol. Microbiol. 51: 433-446.   DOI
21 Roberts, R. J., M. Belfort, T. Bestor, A. S. Bhagwat, T. A. Bickle, J. Bitinaite, et al. 2003. A nomenclature for restriction enzymes, DNA methyltransferases, homing endonucleases and their genes. Nucleic Acids Res. 31: 1805-1812.   DOI   ScienceOn
22 Roberts, R. J., T. Vincze, J. Posfai, and D. Macelis. 2010. REBASE - a database for DNA restriction and modification: Enzymes, genes and genomes. Nucleic Acids Res. 38: D234-D236.   DOI   ScienceOn
23 Ryu, J. and E. Rowsell. 2008. Quick identification of Type I restriction enzyme isoschizomers using newly developed pTypeI and reference plasmids. Nucleic Acids Res. 36: e81.   DOI   ScienceOn
24 Sato, T., T. Fukui, H. Atomi, and T. Imanaka. 2005. Improved and versatile transformation system allowing multiple genetic manipulations of the hyperthermophilic archaeon Thermococcus kodakaraensis. Appl. Environ. Microbiol. 71: 3889-3899.   DOI   ScienceOn
25 Suzuki, H., S. Takahashi, H. Osada, and K. Yoshida. 2011. Improvement of transformation efficiency by strategic circumvention of restriction barriers in Streptomyces griseus. J. Microbiol. Biotechnol. 21: 675-678.   DOI   ScienceOn
26 Takami, H., A. Inoue, F. Fuji, and K. Horikoshi. 1997. Microbial flora in the deepest sea mud of the Mariana Trench. FEMS Microbiol. Lett. 152: 279-285.   DOI   ScienceOn
27 Takami, H., S. Nishi, J. Lu, S. Shinamura, and Y. Takaki. 2004. Genomic characterization of thermophilic Geobacillus species isolated from the deepest sea mud of the Mariana Trench. Extremophiles 8: 351-356.   DOI   ScienceOn
28 Takami, H., Y. Takaki, G. J. Chee, S. Nishi, S. Shimamura, H. Suzuki, et al. 2004. Thermoadaptation trait revealed by the genome sequence of thermophilic Geobacillus kaustophilus. Nucleic Acids Res. 32: 6292-6303.   DOI   ScienceOn
29 Taylor, M. P., C. D. Esteban, and D. J. Leak. 2008. Development of a versatile shuttle vector for gene expression in Geobacillus spp. Plasmid 60: 45-52.   DOI   ScienceOn
30 Wiegel, J. and L. G. Ljungdahl. 1986. The importance of thermophilic bacteria in biotechnology. Crit. Rev. Biotechnol. 3: 39-108.
31 Wu, L. J. and N. E. Welker. 1989. Protoplast transformation of Bacillus stearothermophilus NUB36 by plasmid DNA. J. Gen. Microbiol. 135: 1315-1324.