Browse > Article

Evaluation of Arabinofuranosidase and Xylanase Activities of Geobacillus spp. Isolated from Some Hot Springs in Turkey  

Sabriye, Canakci (Department of Biology, Faculty of Arts and Sciences, Karadeniz Technical University)
Inan, Kadriye (Department of Biology, Faculty of Arts and Sciences, Karadeniz Technical University)
Murat, Kacagan (Department of Biology, Faculty of Arts and Sciences, Karadeniz Technical University)
Belduz, Ali Osman (Department of Biology, Faculty of Arts and Sciences, Karadeniz Technical University)
Publication Information
Journal of Microbiology and Biotechnology / v.17, no.8, 2007 , pp. 1262-1270 More about this Journal
Abstract
Some hot springs located in the west of Turkey were investigated with respect to the presence of thermophilic microorganisms. Based on phenotyping characteristics and 16S rRNA gene sequence analysis, 16 of the isolates belonged to the genus Geobacillus and grew optimally at about $60^{\circ}C$ on nutrient agar. 16S rRNA gene sequence analysis showed that these isolates resembled Geobacillus species by ${\ge}97%$, but SDS-PAGE profiles of these 16 isolates differ from some of the other species of the genus Geobacillus. However, it is also known that analysis of 16S rRNA gene sequences may be insufficient to distinguish between some species. It is proposed that recN sequence comparisons could accurately measure genome similarities for the Geobacillus genus. Based on recN sequence analysis, isolates 11, IT3, and 12 are strains of G stearothermophilus; isolate 14.3 is a strain of G thermodenitrificans; isolates 9.1, IT4.1, and 4.5 are uncertain and it is required to make further analysis. The presence of xylanase and arabinofuranosidase activities, and their optimum temperature and pH were also investigated. These results showed that 7 of the strains have both xylanase and arabinofuranosidase activities, 4 of them has only xylanase, and the remaning 5 strains have neither of these activities. The isolates 9.1, 7.1, and 3.3 have the highest temperature optima ($80^{\circ}C$), and 7.2, 9.1, AO4, 9.2, and AO17 have the highest pH optima (pH 8) of xylanase. Isolates 7.2, AO4, AC15, and 12 have optimum arabinofuranosidase activities at $75^{\circ}C$, and only isolate AC15 has the lowest pH of 5.5.
Keywords
Geobacillus spp.; arabinofuranosidase; xylanase; 16S rRNA; recN;
Citations & Related Records

Times Cited By Web Of Science : 0  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 Beg, O. K., B. Bhushan, M. Kapoor, and G. S. Hoondal. 2000. Production and characterization of thermostable xylanase and pectinase from Streptomyces sp. QG-11-3. J. Ind. Microbiol. Biotechnol. 24: 396-402   DOI   ScienceOn
2 Brosius, J., M. L. Palmer, P. J. Kennedy, and H. F. Noller. 1978. Complete nucleotide sequence of a 16S ribosomal RNA gene from Escherichia coli. Proc. Natl. Acad. Sci. USA 75: 4801-4805
3 Dupont, C. I., P. Juteu, R. Vllemur, F. Lepine, and R. Beaudet. 2005. Evaluation of the enzyme activities of several bacteria isolated from a thermophilic aerobic reactor treating swine waste. Canadian Society of Microbiologists, Annual Conference
4 Gessesse, A. 1998. Purification and properties of two thermostable alkaline xylanases from an alkaliphilic Bacillus sp. Appl. Environ. Microbiol. 64: 3533-3535
5 Khasin, A., I. Alchanati, and Y. Shoham. 1993. Purification and characterization of a thermostable xylanase from Bacillus stearothermophilus T-6. Appl. Environ. Microbiol. 59: 1725-1730
6 Nanmori, T., T. Watanabe, R. Shinke, A. Kohno, and Y. Kawamura. 1990. Purification and properties of thermostable xylanase and $\beta$-xylosidase produced by a newly isolated Bacillus stearothermophilus strain. J. Bacteriol. 172: 6669-6672   DOI
7 Vandamme, P., B. Plot, M. Gillis, P. De Vos, K. Kersters, and J. Swings. 1996. Polyphasic taxonomy, a consensus approach to bacterial systematics. Microbiol. Rev. 60: 407- 438
8 Zeigler, D. R. 2005. Application of a recN sequence similarity analysis to the identification of species within the bacterial genus Geobacillus. Int. J. Syst. Evol. Microbiol. 55: 1171-1179   DOI   ScienceOn
9 Becker, P., I. Abu-Reesh, and S. Markossian. 1997. Determination of the kinetic parameters during continuous cultivation of the lipase-producing thermophile Bacillus sp. IHI-91 on olive oil. Appl. Microbiol. Biotechnol. 48: 184-190   DOI   ScienceOn
10 Sonnleitner, B. and A. Fiechter. 1983. Advantages of using thermophiles in biotechnological processes: Expectations and reality. Trends Biotechnol. 1: 74-80   DOI   ScienceOn
11 Cowan, S. T. and K. J. Steel. 1974. Manual for the Identification of Medical Bacteria, 2nd Ed. Cambridge: Cambridge University, London
12 Wayne, L. G., D. J. Brenner, R. R. Colwell, P. A. D. Grimon, O. Kandler, M. I. Krichevsky, L. H. Moore, W. E. C. Moore, R. G. E. Murray, E. Stackebrandt, M. P. Starr, and H. G. Trüper. 1987. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int. J. Syst. Bacteriol. 37: 463-464   DOI
13 Takao, M., K. Akiyama, and T. Sakai. 2002. Purification and characterization of thermostable endo-1,5-$\alpha$-L-arabinase from a strain of Bacillus thermodenitrificans. Appl. Environ. Microbiol. 68: 1639-1646   DOI   ScienceOn
14 Belduz, A. O., E. J. Lee, and J. G. Harman. 1993. Mutagenesis of the cyclic AMP receptor protein of Escherichia coli: Targeting positions 72 and 82 of the cyclic nucleotide binding pocket. Nucleic Acids Res. 21: 1827-1835   DOI   ScienceOn
15 Belduz, A. O., S. Dulger, and Z. Demirbag. 2003. Anoxybacillus gonensis sp. nov., a moderately thermophilic, xylose-utilizing, endospore-forming bacterium. Int. J. Syst. Evol. Microbiol. 53: 1315-1320   DOI   ScienceOn
16 Benson, D. A., M. S. Boguski, D. J. Lipman, B. F. F. Oullette, B. A. Rapp, and D. L. Wheelet. 1999. GenBank. Nucleic Acids Res. 27: 12-17   DOI   ScienceOn
17 Swofford, D. L. 1998. Phylogenetic Analysis Using Parsimony (and other methods). Sinauer, Sunderland, MA
18 Nazina, T. N., T. P. Tourova, A. B. Poltaraus, E. V. Novikova, A. A. Grigoryan, A. E. Ivanova, A. M. Lysenko, V. V. Petrunyaka, G. A. Osipov, S. S. Belyaev, and M. V. Ivanov. 2001. Taxonomic study of aerobic thermophilic bacilli: Descriptions of Geobacillus subterraneus gen. nov., sp. nov. and Geobacillus uzenensis sp. nov. from petroleum reservoirs and transfer of Bacillus stearothermophilus, Bacillus thermocatenulatus, Bacillus thermoleovorans, Bacillus kaustophilus, Bacillus thermoglucosidasius, and Bacillus thermodenitrificans to Geobacillus as the new combinations G. stearothermophilus, G. thermocatenulatus, G. thermoleovorans, G. kaustophilus, G. thermoglucosidasius, and G. thermodenitrificans. Int. J. Syst. Evol. Microbiol. 51: 433-446   DOI
19 Bezalel, L., Y. Shoham, and E. Rosenberg. 1993. Characterization and delignification activity of a thermostable $\alpha$-Larabinofuranosidase from Bacillus stearothermophilus. Appl. Microbiol. Biotechnol. 40: 57-62
20 Cato, E. P., D. E. Hash, L. V. Holdeman, and W. E. C. Moore. 1982. Electrophoretic study of Clostridium species. J. Clin. Microbiol. 15: 688-702
21 Stackebrandt, E. and B. M. Goebel. 1994. Taxonomic note: A place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int. J. Syst. Bacteriol. 44: 846-849   DOI   ScienceOn
22 Maugeri, T. L., C. Gugliandolo, D. Caccamo, and E. Stackebrandt. 2001. A polyphasic taxonomic study of thermophilic bacilli from shallow, marine vents. Syst. Appl. Microbiol. 24: 572-587   DOI   ScienceOn
23 Thompson, J. D., T. J. Gibson, F. Plewniak, F. Jeanmougin, and D. G. Higgins. 1997. The ClustalX Windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 24: 4876-4882
24 Miller, G. L. 1959. Use of dinitrosalicyclic acid reagent for determination of reducing sugars. Anal. Chem. 31: 426-428   DOI
25 Lee, D., Y. S. Koh, K. J. Kim, B. C. Kim, H. J. Choi, D. S. Kim, M. T. Suhartono, and Y. R. Pyun. 1999. Isolation and characterization of a thermophilic lipase from Bacillus thermoleovorans ID-1. FEMS Microbiol. Lett. 179: 393-400   DOI   ScienceOn
26 Rainey, F. A., D. Fritze, and E. Stackebrandt. 1994. The phylogenetic diversity of thermophilic members of the genus Bacillus as revealed by 16S rDNA analysis. FEMS Microbiol. Lett. 115: 205-212   DOI   ScienceOn
27 Touzel, J. P., M. O'Donohue, P. Debeire, E. Samain, and C. Breton. 2000. Thermobacillus xylanilyticus gen. nov., sp. nov., a new aerobic thermophilic xylan-degrading bacterium isolated from farm soil. Int. J. Syst. Evol. Microbiol. 50: 315-320   DOI   ScienceOn
28 Zeigler, D. R. 2003. Gene sequences useful for predicting relatedness of whole genomes in bacteria. Int. J. Syst. Evol. Microbiol. 53: 1893-1900   DOI   ScienceOn
29 Altschul, S. F., W. Gish, W. Miller, E. W. Myers, and D. J. Lipman. 1990. Basic local alignment search tool. J. Mol. Biol. 215: 403-410   DOI
30 Bergquist, P. L. and H. W. Morgan. 1992. The molecular genetics and biotechnological application of enzyme from extremely thermophilic eubacteria, pp. 44-75. In R. A. Herbert and R. J. Sharp (eds.), Molecular Biology and Biotechnology of Extremophiles. Chapman & Hall, New York
31 Marteinsson, V. T., J. L. Birrien, C. Jeanthon, and D. Prieur. 1996. Numerical taxonomic study of thermophilic Bacillus isolated from three geographically separated deep-sea hydrothermal vents. FEMS Microbiol. Ecol. 21: 255-266   DOI   ScienceOn
32 Beffa, T., M. Blanc, P. F. Lyon, G. Vogt, M. Marchiani, J. L. Fischer, and M. Aragno. 1996. Isolation of Thermus strains from hot composts (60 to 80$^{\circ}C$). Appl. Environ. Microbiol. 62: 1723-1727
33 Gilead, S. and Y. Shoham. 1995. Purification and characterization of $\alpha$-L-arabinofuranosidase from Bacillus stearothermophilus T-6. Appl. Environ. Microbiol. 61: 170-174