DOI QR코드

DOI QR Code

Characterization of the Thermophilic Bacterium Geobacillus sp. Strain GWE1 Isolated from a Sterilization Oven

  • Received : 2013.01.08
  • Accepted : 2013.07.12
  • Published : 2013.09.28

Abstract

A gram-positive, rod-shaped, spore-forming, motile thermophilic bacterium was isolated from a sterilization oven. The microorganism GWE1, formally named Geobacillus wiegelii identified as a member of the genus Geobacillus. GWE1 grew under aerobic conditions of between $60-80^{\circ}C$ (optimum $670^{\circ}C$), in a pH range of 3.0-8.0 (optimum $pH^{70^{\circ}C}$ 5.8), and between 0 and 2 M NaCl (optimum 0.3 M). The membrane polar lipids were dominated by branched saturated fatty acids, which included as the major constituents; iso-15:0 (13.3%), 16:1(${\omega}7$) (12.8%), 16:0 (28.5%), iso-17:0 (13.5%) and anteiso-17:0 (12.3%). The DNA G+C content was 47.2 mol% (determined by HPLC). The 16S rRNA gene sequence of GWE1 showed a high similarity with Geobacillus caldoxylosilyticus (97%). However, the level of DNA-DNA relatedness was only 58%. These data suggest that GWE1 is probably a novel specie of the genus Geobacillus.

Keywords

References

  1. Banat I, Marchant R, Rahman T. 2004. Geobacillus debilis sp. nov., a novel obligately thermophilic bacterium isolated from a cool soil environment, and reassignment of Bacillus pallidus to Geobacillus pallidus comb. nov. Int. J. Syst. Evol. Microbiol. 54: 2197-2201. https://doi.org/10.1099/ijs.0.63231-0
  2. Bergey DH, Holt J, Krieg N, Sneath P. 1994. Bergey's Manual of Determinative Bacteriology. 9th edition ed: Lippincott Williams & Wilkins.
  3. Chen XG, Stabnikova O, Tay JH, Wang JY, Tay ST. 2004. Thermoactive extracellular proteases of Geobacillus caldoproteolyticus, sp. nov., from sewage sludge. Extremophiles 8: 489-98. https://doi.org/10.1007/s00792-004-0412-5
  4. Coorevits A, Dinsdale A, Halket G, Lebbe L, De Vos P, Van Landschoot A, et al. 2012. Taxonomic revision of the genus Geobacillus: emendation of Geobacillus, G. stearothermophilus, G. jurassicus, G. toebii, G. thermodenitrificans and G. thermoglucosidans (nom. corrig., formerly 'thermoglucosidasius'); transfer of Bacillus thermantarcticus to the genus as G. thermantarcticus comb. nov.; proposal of Caldibacillus debilis gen. nov., comb. nov.; transfer of G. tepidamans to Anoxybacillus as A. tepidamans comb. nov.; and proposal of Anoxybacillus caldiproteolyticus sp. nov. Int. J. Syst. Evol. Microbiol. 62: 1470-1485. https://doi.org/10.1099/ijs.0.030346-0
  5. Cowan ST, Steel KJ. 1965. Identification of Medical Bacteria. Appx. D, pp. 146-165. University Press, Cambridge.
  6. De Ley J, Cattoir H, Reynaerts A. 1970. The quantitative measurement of DNA hybridization from renaturation rates. Eur. J. Biochem. 12: 133-142. https://doi.org/10.1111/j.1432-1033.1970.tb00830.x
  7. Derekova A, Sjoholm C, Mandeva R, Michailova L, Kambourova M. 2006. Biosynthesis of a thermostable gellan lyase by newly isolated and characterized strain of Geobacillus stearothermophilus 98. Extremophiles 10: 321-326. https://doi.org/10.1007/s00792-005-0503-y
  8. Felsenstein J. 1985. Confidence limits on phylogenies: An approach using the bootstrap. Evolution 39: 783-791. https://doi.org/10.2307/2408678
  9. Fortina MG, Mora D, Schumann P, Parini C, Manachini PL, Stackebrandt E. 2001. Reclassification of Saccharococcus caldoxylosilyticus as Geobacillus caldoxylosilyticus (Ahmad et al. 2000) comb. nov. Int. J. Syst. Evol. Microbiol. 51: 2063- 2071. https://doi.org/10.1099/00207713-51-6-2063
  10. Higgins DG, Sharp PM. 1988. Clustal:a package for performing muliple sequence alignments on a microcomputer. Gene 73: 237-244. https://doi.org/10.1016/0378-1119(88)90330-7
  11. Huss VAR, Festl H, Schleifer KH. 1983. Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst. Appl. Microbiol. 4: 184-192. https://doi.org/10.1016/S0723-2020(83)80048-4
  12. Johnson JL. 1981. Genetic characterization, pp. 450-472. In Murray RGE, RN Costilow, EW Nester, WA Wood, NR Krieg, and GB Phillips, (ed.), Manual of methods for general bacteriology. ASM, Washington, D.C.
  13. Lanyi B. 1987. Classical and rapid identification methods for medically important bacteria. Methods Microbiol. 19: 1-67.
  14. Li H, Zhang X. 2005. Characterization of thermostable lipase from thermophilic Geobacillus sp. TW1. Protein Expr. 10Purif. 42: 153-159. https://doi.org/10.1016/j.pep.2005.03.011
  15. Marchant R, Banat IM, Rahman TJ, Berzano M. 2002a. What are high temperature bacteria doing in cold environments? Trends Microbiol. 10: 120-121. https://doi.org/10.1016/S0966-842X(02)02311-9
  16. Marchant R, Banat IM, Rahman TJ, Berzano M. 2002b. The frequency and characteristics of highly thermophilic bacteria in cool soil environments. Environ. Microbiol. 4: 595-602. https://doi.org/10.1046/j.1462-2920.2002.00344.x
  17. Metin K, Burcu Bakir Ateslier Z, Basbulbul G, Halil Biyik H. 2006. Characterization of esterase activity in Geobacillus sp. HBB-4. J. Basic Microbiol. 46: 400-409. https://doi.org/10.1002/jobm.200510121
  18. Mesbah M, Premachandran U, Whitman W. 1989. Precise measurement of the G+C content of deoxyribonucleic acid by high performance liquid chromatography. Int. J. Syst. Bact. 39: 159-167. https://doi.org/10.1099/00207713-39-2-159
  19. Nazina TN, Tourova TP, Poltaraus AB, Novikova EV, Rigoryan GAA, Ivanova AE, et al. 2001. Taxonomic study of aerobic thermophilic bacilli: descriptions of Geobacillus subterraneus gen. nov., sp. nov. and Geobacillus uzenensis sp. nov. from petroleum reservoirs and transfer of Bacillus stearothermophilus, Bacillus thermocatenulatus, Bacillus thermoleovorans, Bacillus kaustophilus, Bacillus thermoglucosidasius and Bacillus thermodenitrificans to Geobacillus as the new combinations G. stearothermophilus, G. thermocatenulatus, G. thermoleovorans, G. kaustophilus, G. thermoglucosidasius and G. thermodenitrificans. Int. J. Syst. Evol. Microbiol. 51: 33-446.
  20. Nordström KM, Laakso SV. 1992. Effect of growth temperature on fatty acid composition of ten Thermus strains. Appl. Environ. Microbiol. 58: 1656-1660.
  21. Reysenbacha AL. 2001. Microbiology of ancient and modern hydrothermal systems. Trends Microbiol. 9: 79-86. https://doi.org/10.1016/S0966-842X(00)01921-1
  22. Rudi K, Skulberg OM, Larsen F, Jacoksen KS. 1997. Strain classification of oxyphotobacteria in clone cultures on the basis of 16S rRNA sequences from variable regions V6, V7 and V8. Appl. Environ. Microbiol. 63: 2593-2599.
  23. Saitou N, Nei M. 1987. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406-425.
  24. Tai SK, Lin HP, Kuo J, Liu JK. 2006. Isolation and characterization of a cellulolytic Geobacillus thermoleovorans T4 strain from sugar refinery wastewater. Extremophiles 8: 345-349.
  25. Solimam NA. 2008. Coproduction of thermostable amylase and beta-galactosidase enzymes by Geobacillus atearothermophilus SAP-40: aplication of Plackett-Burman design to evaluate culture requirements affecting enzyme production. J. Microbiol. Biotechnol. 18: 695-703.
  26. Tamura K, Nei M, Kumar S. 2004. Prospects for inferring very large phylogenies by using the neighbor-joining method. PNAS (USA) 101: 11030-11035. https://doi.org/10.1073/pnas.0404206101
  27. Tamura K, Dudley J, Nei M, Kumar S. 2007. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24: 1596-1599. https://doi.org/10.1093/molbev/msm092
  28. Tanner MA, Coleman WJ, Yang MM, Youvan DC. 2000. Complex microbial communities inhabiting sulfide-rich black mud from marine coastal environments. Biotechnology et alia 8: 1-16.
  29. Thompson JC, Higgins DG, Gibson TJ. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting position, specific gap penalties, and weight matrix choice. Nucleic Acids Res. 22: 4673-4680. https://doi.org/10.1093/nar/22.22.4673
  30. Watanabe K, Kodama Y, Harayama S. 2001. Design and evaluation of PCR primers to amplify bacterial 16S ribosomal DNA fragments used for community fingerprinting. J. Microb. Method. 44: 253-262. https://doi.org/10.1016/S0167-7012(01)00220-2
  31. Zhang Y, Ji C, Zhang X, Yang Z, Peng J, Qiu R, et al. 2008. A moderately thermostable alkaline phosphatase from Geobacillus thermodenitrificans T2: cloning, expression and biochemical characterization. Appl. Biochem. Biotechnol. 151: 81-92. https://doi.org/10.1007/s12010-008-8166-7
  32. Zhang Y, Yang Z, Huang X, Peng J, Fei X, Gu S, et al. 2008. Cloning, expression, and characterization of a thermostable PAP2L2, a new member of the type-2 phosphatidic acid phosphatase family from Geobacillus toebii T-85. Biosci. Biotechnol. Biochem. 72: 3134-3141. https://doi.org/10.1271/bbb.80305

Cited by

  1. Characterization Of A Novel Hydrolytic Enzyme Producing Thermophilic Bacterium Isolated From The Hot Spring Of Azad Kashmir-Pakistan vol.59, pp.None, 2013, https://doi.org/10.1590/1678-4324-2016150662
  2. Peculiarities and biotechnological potential of environmental adaptation by Geobacillus species vol.102, pp.24, 2013, https://doi.org/10.1007/s00253-018-9422-6
  3. Isolation of a Psychrotolerant and UV-C-Resistant Bacterium from Elephant Island, Antarctica with a Highly Thermoactive and Thermostable Catalase vol.8, pp.1, 2020, https://doi.org/10.3390/microorganisms8010095