• Title/Summary/Keyword: Generator Acceleration

Search Result 81, Processing Time 0.027 seconds

A study of turbine acceleration generated following to AVR fault of Wolsong #1 main generator. (주발전기용 자동 전압조정기의 고장에 따른 터빈 가속도 발생 사고 검토)

  • Chang, Tae-Hee
    • Proceedings of the KIEE Conference
    • /
    • 1992.07a
    • /
    • pp.74-77
    • /
    • 1992
  • During normal operation of 100% FP Reactor power(TBN/GEN output:690MWe), several times of acceleration phenomena has been generated on the turbine generator-of Wolsong #1 NPP. It was concluded that the acceleration occured following big sudden drop of the terminal voltage of main generator due to AVR potentiometer fault. The cause of turbine acceleration is reviewed with a several records and demonstrated by computer simulation, also presents a countermeasure of its trouble.

  • PDF

A Study on Ion Wind Characteristics of Acceleration Type Multipoint Electrode (가속형 다침전극의 이온풍 특성 연구)

  • Kim, Jin-Gyu
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.5
    • /
    • pp.104-109
    • /
    • 2011
  • In this paper, after an acceleration typed ion wind generator which could format strong electric field in air was manufactured and installed, the effects of the electrode configuration and distance of acceleration type ion wind generator with triangle structure on the ion wind generation characteristics were investigated. As a result, the ion wind generator with curvature multipoint electrode could generate higher ion wind velocity and ion wind generation yield than others with multipoint electrode, curvature line electrode, line electrode structure. The ion wind generator with curvature multipoint electrode showed a peak ion wind velocity of 1.33[m/s] at 19.0[kV] and a ion wind generation yield of 0.12[m/Ws] at 15.0[kV].

Design of Trajectory Generator for Performance Evaluation of Navigation Systems

  • Jae Hoon Son;Sang Heon Oh;Dong-Hwan Hwang
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.12 no.4
    • /
    • pp.409-421
    • /
    • 2023
  • In order to develop navigation systems, simulators that provide navigation sensors data are required. A trajectory generator that simulates vehicle motion is needed to generate navigation sensors data in the simulator. In this paper, a trajectory generator for evaluating navigation system performance is proposed. The proposed trajectory generator consists of two parts. The first part obtains parameters from the motion scenario file whereas the second part generates position, velocity, and attitude from the parameters. In the proposed trajectory generator six degrees of freedom, halt, climb, turn, accel turn, spiral, combined, and waypoint motions are given as basic motions with parameters. These motions can be combined to generate complex trajectories of the vehicle. Maximum acceleration and jerk for linear motion and maximum angular acceleration and velocity for rotational motion are considered to generate trajectories. In order to show the usefulness of the proposed trajectory generator, trajectories were generated from motion scenario files and the results were observed. The results show that the proposed trajectory generator can accurately simulate complex vehicle motions that can be used to evaluate navigation system performance.

Research on the Ejection Gas Generator to Improve Ejecting Performance (사출성능 개선을 위한 사출용 가스발생기 연구)

  • Oh, Seok-Jin;Jang, Seung-Gyo;Cha, Hong-Seok
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.5
    • /
    • pp.383-390
    • /
    • 2013
  • The reduction of the maximum acceleration which causes shock for a missile is very important to prevent abnormal operation of a missile and decrease size and cost of missile components. Because the maximum acceleration created by operation of an ejection gas generator occurs in the initial ejection stage, the design parameters which affect initial ejection stage were examined. The igniter and the nozzle closure were selected as design parameters of a gas generator. The maximum acceleration created by the gas generator was examined experimentally by changing of the design parameters. Finally the reduction effect of the maximum acceleration was compared quantitatively by static fire test of a gas generator. The maximum acceleration of the best model which was applied to each optimal design parameter was about 68% reduced than that of the reference model.

Performance Analysis of the GPS Receiver under High Acceleration and Jerk Environments

  • Kwon, Byung-Moon;Moon, Ji-Hyeon;Choi, Hyung-Don
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.2
    • /
    • pp.279-283
    • /
    • 2006
  • The GPS receiver developed by KARI for the satellite launch vehicle should operate under severe dynamic environments such as high acceleration and jerk. Several terrestrial tests including the outdoor centrifuge test are planed in order to verify performances of the GPS receiver before flight. This paper deals with preliminary test results of the GPS receiver using a GPS signal generator before the centrifuge test that is a performance test of the GPS receiver using live GPS satellite signals. Test methods of the GPS receiver for the satellite launch vehicle under high centripetal acceleration and jerk utilizing a GPS signal generator are described. The simulation results are also analyzed in this paper.

  • PDF

Case_study of detecting loose part by acceleration signal (가속도 충격파형을 이용한 기기의 결함 위치분석 및 진단사례)

  • Yoo, Mu-Sang;Park, Seung-Do;Park, Hyeon-Cheol;Choi, Nak-Kyun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.463-468
    • /
    • 2007
  • The abnormal sound of generator frame is analyzed by a acceleration signal. The spike-like time signal is major characteristics of impacting force. The distributional map of vibration level is one of visualization method. With map, noise source was easily detected. After de_assembly of generator, loose part of internal component is the source of impact force by mechanical movement of stator inherently. In contact condition of part with clearance, the level of impact signal is different at each revolution and impact signal did not happens periodically.

  • PDF

Decrease of Burst Pressure used a Nozzle Closure and Ignition Characteristics for a Gas Generator (가스발생기용 노즐마개 파열압력 저감화에 따른 점화특성)

  • Cha, Hong-Seok;Oh, Seok-Jin;Park, Jae-Beom;Lee, Yeung-Jo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.217-220
    • /
    • 2010
  • This paper presents an achieving method of reducing maximum acceleration for the missile by decrease of burst pressure in a nozzle closure. The relation of notch shape and burst pressure for a nozzle closure is examined by experiment. In the point of maximum acceleration reduction for a missile, an improved nozzle closure effects well compared with that of a reference closure by ground burning test of a gas generator.

  • PDF

Development of the High_frequency and Low_strain Vibration Stimulation System for Stimulating Bone (고주파 저스트레인 골자극 인가용 진동 시스템 개발)

  • Yoo, Ju-Yeon;Park, Guen-Chul;Jeon, Ah-Young;Kim, Yun-Jin;Ro, Jung-Hoon;Jeon, Gye-Rok
    • Journal of Biomedical Engineering Research
    • /
    • v.32 no.2
    • /
    • pp.177-184
    • /
    • 2011
  • In this study, the system for application of the bone stimulation was implemented using high frequency and low strain method. The whole system consists of the high frequency and low strain vibration stimulation system 177 for stimulating bone, LVDT sensor, and wireless sensor based on tri-axial accelerometer. To evaluate the usefulness of the system, the frequencies and accelerations from function generator were applied to the vibration stimulation system. The range of frequency was 17 Hz, 30 Hz, 45 Hz, 50 Hz and the range of acceleration was set 0.3 g, 0.6 g, 1g, and 2 g. The measured frequencies and acceleration using LVDT (linear variable difference transformer) sensor and 3-axial accelerometer were estimated and compared. The range of frequencies average difference was from 0.0 to 0.004 Hz. As the standard deviation of frequencies estimated by LVDT sensor and accelerometer was below 0.03 Hz and the output frequencies of function generator were similar: Also the results of t-test were satisfied with conditions of p > 0.05. And the acquired frequencies and acceleration from vibration measuring device module were estimated and analyzed. As the mean of accelerations was similar to the acceleration applied from function generator. And the standard deviation of acceleration estimated from vibration measuring device module was ranged from 0.019 g to 0.038 g. Also the results of t-test were satisfied with conditions of p > 0.05. Therefore, these results were airy similar to the acceleration applied from function generator. As a result, the usefulness of the system was confirmed. n a further study, clinical experiment will be carried out with the authorization of IRB (institutional review board) so that appropriate frequency and strain would be investigated in clinical field.

Determination of Critical Generator Group Using Accelerating Power and Synchronizing Power Coefficient in the Transient Energy Function Method

  • Chun, Yeong-Han
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.2
    • /
    • pp.161-166
    • /
    • 2011
  • This paper proposes an algorithm for determining critical generator lists using accelerating power and synchronizing power coefficient (SPC), and critical generator group (CGG) from CGG candidates, which is a combination of critical generators. The accurate determination of CGG provides a more accurate energy margin while providing system operator with information of possible unstable generator group. Classical transient energy function (TEF) method selects the critical generators with big corrected kinetic energy of each generator at the moment of fault removal. However, the generator with small acceleration after fault, that is, the generator with small corrected kinetic energy, is also likely to belong to CGG if the generator has small synchronizing power. The proposed algorithm has been verified to be effective compared with the classical TEF method. We utilized the power system of Korean Electric Power Corporation(KEPCO) as a test system.

An Experimental Study upon Modeling and Control of Coupled Engine and Generator System (엔진-발전기 시스템 모델링 및 제어특성에 관한 실험적 연구)

  • 송승호;정세종;오정훈;함윤영;최용각;이광희
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.5
    • /
    • pp.163-169
    • /
    • 2003
  • Modeling of engine-generator system and its control responses are investigated using high performance generator controller. The nonlinear engine is modeled using mean torque production model based on experimental engine map. In case of diesel engine. the amount of injected fief is decided by engine controller depending on the APS(Acceleration Position Sensor) value. An electromechanical generator model contains electrical circuits and moment of inertia. The generator controller maximizes the performance of generator using decoupling and linearized current feedback control. The generator control system consists of 3-phase IGBT inverter and controller board based on 32 bit floating point DSP. Field oriented control algorithm with digital current feedback control at 10kHz sampling enabled high performance torque and speed control of induction machine. Not only the steady state but also the transient state responses can be evaluated through a batch test of the engine generator system. Developed engine and generator modeling and control can be utilized in various applications such as Series Hybrid Electric Vehicle(SHEV), engine-generator for emergency, and other hybrid generation systems.