• 제목/요약/키워드: Generalized hypergeometric functions

검색결과 111건 처리시간 0.019초

Some Generating Relations of Extended Mittag-Leffler Functions

  • Khan, Nabiullah;Ghayasuddin, Mohd;Shadab, Mohd
    • Kyungpook Mathematical Journal
    • /
    • 제59권2호
    • /
    • pp.325-333
    • /
    • 2019
  • Motivated by the results on generating functions investigated by H. Exton and many other authors, we derive certain (presumably) new generating functions for generalized Mittag-Leffler-type functions. Specifically, we introduce a new class of generating relations (which are partly bilateral and partly unilateral) involving the generalized Mittag-Leffler function. Also we present some special cases of our main result.

ANOTHER METHOD FOR A KUMMER-TYPE TRANSFORMATION FOR A 2F2 HYPERGEOMETRIC FUNCTION

  • Choi, June-Sang;Rathie, Arjun K.
    • 대한수학회논문집
    • /
    • 제22권3호
    • /
    • pp.369-371
    • /
    • 2007
  • Very recently, by employing an addition theorem for the con-fluent hypergeometric function, Paris has obtained a Kummer-type trans-formation for a $_2F_2(x)$ hypergeometric function with general parameters in the form of a sum of $_2F_2(-x)$ functions. The aim of this note is to derive his result without using the addition theorem.

AN EXTENSION OF THE BETA FUNCTION EXPRESSED AS A COMBINATION OF CONFLUENT HYPERGEOMETRIC FUNCTIONS

  • Marfaing, Olivier
    • 호남수학학술지
    • /
    • 제43권2호
    • /
    • pp.183-197
    • /
    • 2021
  • Recently several authors have extended the Beta function by using its integral representation. However, in many cases no expression of these extended functions in terms of classic special functions is known. In the present paper, we introduce a further extension by defining a family of functions Gr,s : ℝ*+ → ℂ, with r, s ∈ ℂ and ℜ(r) > 0. For given r, s, we prove that this function satisfies a second-order linear differential equation with rational coefficients. Solving this ODE, we express Gr,s as a combination of confluent hypergeometric functions. From this we deduce a new integral relation satisfied by Tricomi's function. We then investigate additional specific properties of Gr,1 which take the form of new non trivial integral relations involving exponential and error functions. We discuss the connection between Gr,1 and Stokes' first problem (or Rayleigh problem) in fluid mechanics which consists in determining the flow created by the movement of an infinitely long plate. For $r{\in}{\frac{1}{2}}{\mathbb{N}}^*$, we find additional relations between Gr,1 and Hermite polynomials. In view of these results, we believe the family of extended beta functions Gr,s will find further applications in two directions: (i) for improving our knowledge of confluent hypergeometric functions and Tricomi's function, (ii) and for engineering and physics problems.

SOME τ-EXTENSIONS OF LAURICELLA FUNCTIONS OF SEVERAL VARIABLES

  • KALLA, SHYAM LAL;PARMAR, RAKESH KUMAR;PUROHIT, SUNIL DUTT
    • 대한수학회논문집
    • /
    • 제30권3호
    • /
    • pp.239-252
    • /
    • 2015
  • Motivated mainly by certain interesting extensions of the ${\tau}$-hypergeometric function defined by Virchenko et al. [11] and some ${\tau}$-Appell's function introduced by Al-Shammery and Kalla [1], we introduce here the ${\tau}$-Lauricella functions $F_A^{(n),{\tau}_1,{\cdots},{\tau}_n}$, $F_B^{(n),{\tau}_1,{\cdots},{\tau}_n}$ and $F_D^{(n),{\tau}_1,{\cdots},{\tau}_n}$ and the confluent forms ${\Phi}_2^{(n),{\tau}_1,{\cdots},{\tau}_n}$ and ${\Phi}_D^{(n),{\tau}_1,{\cdots},{\tau}_n}$ of n variables. We then systematically investigate their various integral representations of each of these ${\tau}$-Lauricella functions including their generating functions. Various (known or new) special cases and consequences of the results presented here are also considered.

REMARKS ON A SUMMATION FORMULA FOR THREE-VARIABLES HYPERGEOMETRIC FUNCTION $X_8$ AND CERTAIN HYPERGEOMETRIC TRANSFORMATIONS

  • Choi, June-Sang;Rathie, Arjun K.;Harsh, H.
    • East Asian mathematical journal
    • /
    • 제25권4호
    • /
    • pp.481-486
    • /
    • 2009
  • The first object of this note is to show that a summation formula due to Padmanabham for three-variables hypergeometric function $X_8$ introduced by Exton can be proved in a different (from Padmanabham's and his observation) yet, in a sense, conventional method, which has been employed in obtaining a variety of identities associated with hypergeometric series. The second purpose is to point out that one of two seemingly new hypergeometric identities due to Exton was already recorded and the other one is easily derivable from the first one. A corrected and a little more compact form of a general transform involving hypergeometric functions due to Exton is also given.

CERTAIN INTEGRALS INVOLVING 2F1, KAMPÉDE FÉRIET FUNCTION AND SRIVASTAVA POLYNOMIALS

  • Agarwal, Praveen;Chand, Mehar;Choi, Junesang
    • 대한수학회논문집
    • /
    • 제31권2호
    • /
    • pp.343-353
    • /
    • 2016
  • A remarkably large number of integrals whose integrands are associated, in particular, with a variety of special functions, for example, the hypergeometric and generalized hypergeometric functions have been recorded. Here we aim at presenting certain (presumably) new and (potentially) useful integral formulas whose integrands are involved in a product of $_2F_1$, Srivastava polynomials, and $Kamp{\acute{e}}$ de $F{\acute{e}}riet$ functions. The main results are derived with the help of some known definite integrals obtained earlier by Qureshi et al. [4]. Some interesting special cases of our main results are also considered.

A STUDY OF NEW CLASS OF INTEGRALS ASSOCIATED WITH GENERALIZED STRUVE FUNCTION AND POLYNOMIALS

  • Haq, Sirazul;Khan, Abdul Hakim;Nisar, Kottakkaran Sooppy
    • 대한수학회논문집
    • /
    • 제34권1호
    • /
    • pp.169-183
    • /
    • 2019
  • The main aim of this paper is to establish a new class of integrals involving the generalized Galu$Galu{\grave{e}}$-type Struve function with the different type of polynomials such as Jacobi, Legendre, and Hermite. Also, we derive the integral formula involving Legendre, Wright generalized Bessel and generalized Hypergeometric functions. The results obtained here are general in nature and can deduce many known and new integral formulas involving the various type of polynomials.

CERTAIN CLASSES OF INFINITE SERIES DEDUCIBLE FROM MELLIN-BARNES TYPE OF CONTOUR INTEGRALS

  • Choi, Junesang;Agarwal, Praveen
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제20권4호
    • /
    • pp.233-242
    • /
    • 2013
  • Certain interesting single (or double) infinite series associated with hypergeometric functions have been expressed in terms of Psi (or Digamma) function ${\psi}(z)$, for example, see Nishimoto and Srivastava [8], Srivastava and Nishimoto [13], Saxena [10], and Chen and Srivastava [5], and so on. In this sequel, with a view to unifying and extending those earlier results, we first establish two relations which some double infinite series involving hypergeometric functions are expressed in a single infinite series involving ${\psi}(z)$. With the help of those series relations we derived, we next present two functional relations which some double infinite series involving $\bar{H}$-functions, which are defined by a generalized Mellin-Barnes type of contour integral, are expressed in a single infinite series involving ${\psi}(z)$. The results obtained here are of general character and only two of their special cases, among numerous ones, are pointed out to reduce to some known results.