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CERTAIN CLASSES OF INFINITE SERIES DEDUCIBLE FROM
MELLIN-BARNES TYPE OF CONTOUR INTEGRALS

Junesang Choi a, ∗ and Praveen Agarwal b

Abstract. Certain interesting single (or double) infinite series associated with hy-
pergeometric functions have been expressed in terms of Psi (or Digamma) function
ψ(z), for example, see Nishimoto and Srivastava [8], Srivastava and Nishimoto [13],
Saxena [10], and Chen and Srivastava [5], and so on. In this sequel, with a view to
unifying and extending those earlier results, we first establish two relations which
some double infinite series involving hypergeometric functions are expressed in a sin-
gle infinite series involving ψ(z). With the help of those series relations we derived,
we next present two functional relations which some double infinite series involving
H-functions, which are defined by a generalized Mellin-Barnes type of contour in-
tegral, are expressed in a single infinite series involving ψ(z). The results obtained
here are of general character and only two of their special cases, among numerous
ones, are pointed out to reduce to some known results.

1. Introduction and Preliminaries

Certain interesting single (or double) infinite series associated with hypergeo-
metric functions (1.4) have recently been expressed in terms of Psi (or Digamma)
function ψ(z) in (1.1), for example, see Nishimoto and Srivastava [8], Srivastava and
Nishimoto [13], Saxena [10], Chen and Srivastava [5] and Srivastava and Choi [15],
and so on. In this connection, with a view to unifying and extending those earlier
results, we first establish two relations which some double infinite series involving hy-
pergeometric functions are expressed in a single infinite series involving ψ(z). With
the help of those series relations we derived, we next present two functional relations
which some double infinite series involving H-functions in (3.1), which are defined
by a generalized Mellin-Barnes type of contour integral, are expressed in a single
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infinite series involving ψ(z). The results obtained here are of general character and
only two of their special cases, among numerous ones, are pointed out to reduce to
some known results.

To do this, we begin by recalling the Psi (or Digamma) function ψ(z) (cf. [15,
Section 1.2] and [16, p. 24]) defined by

(1.1) ψ(z) :=
d

dz
{logΓ(z)} =

Γ′(z)
Γ(z)

and the following well-known (rather classical) result (see, for example, [16, p. 352]):

(1.2)
∞∑

n=1

(ν)n

n(λ)n
= ψ(λ)− ψ(λ− ν)

(<(λ− ν) > 0; λ /∈ Z−0
)
,

where Γ is the familiar Gamma function, (λ)n denotes the Pochhammer symbol
defined (for λ ∈ C) by

(1.3) (λ)n :=
Γ(λ + n)

Γ(λ)
=

{
1 (n = 0)

λ(λ + 1) · · · (λ + n− 1) (n ∈ N := {1, 2, 3, · · · }),

and C and Z−0 are the sets of complex numbers and nonpositive integers, respectively.
A natural generalization of the hypergeometric functions 2F1, 1F1, et cetera (con-

sidered in the vast literature; see, for example, [16, p. 71]) is accomplished by the
introduction of an arbitrary number of numerator and denominator parameters. The
resulting series:

(1.4)
pFq

[
α1, · · · , αp;

β1, · · · , βq;
z

]
=

∞∑

n=0

(α1)n · · · (αp)n

(β1)n · · · (βq)n

zn

n!

= pFq(α1, · · · , αp; β1, · · · , βq; z),

where (λ)n is the Pochhammer symbol defined by (1.3), is known as the generalized
Gauss (and Kummer) series, or simply, the generalized hypergeometric series.

The summation formula (1.2) and its obvious special cases were revived, in recent
years, as illustrations emphasizing the usefulness of fractional calculus in evaluating
infinite sums. For a detailed historical account of (1.2), and of its various conse-
quences and generalizations have been presented by Nishimoto and Srivastava [8].
A systematic account of certain family of infinite series which can be expressed in
terms of Digamma functions together with their relevant unification and generaliza-
tion has been given by Srivastava [14], Al-Saqabi et al. [1] and Aular de Duran et
al. [2].
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From the aforementioned work of Nishimoto and Srivastava [8], we choose to
recall here two interesting consequences of the summation formula (1.2), which are
contained in Theorem 1 below.

Theorem 1 ([8]). Let {Rk}∞k=0 be an arbitrary bounded sequence of complex num-
bers. Then we have

(1.5)

∞∑

n=1

(ν)n

n(λ)n

∞∑

k=0

Rk

(λ + n)k

zk

k!
=

∞∑

k=0

Rk

(λ)k
[ψ(λ + k)− ψ(λ− ν + k)]

zk

k!
(<(λ− ν) > 0; λ /∈ Z−0

)

and

(1.6)

∞∑

n=1

(ν)n

n(λ)n

∞∑

k=0

(ν + n)k

(λ + n)k
Rk

zk

k!
=

∞∑

k=0

(ν)k

(λ)k
[ψ(λ + k)− ψ(λ− ν)]Rk

zk

k!
(<(λ− ν) > 0; λ /∈ Z−0

)
,

provided that each of the series involved converges absolutely.

2. Generalizations of the Results in Theorem 1

In this section, we establish certain generalizations of the formulas (1.5) and (1.6).

Theorem 2. Let {Rk}∞k=0 be an arbitrary bounded sequence of complex numbers
and set

(2.1)
Un(α, β, µ, η, ρ(k); z) :=

∞∑

k=0

Rk
Γ(µ + ρ(k))Γ(µ + α + β + η + ρ(k))

Γ(µ + η + ρ(k))Γ(µ + α + β + n + ρ(k))

· 3F2

[
α + n, α + β, −η;

µ + α + β + n + ρ(k), α; 1
]

zk

k!
.

Then we obtain
(2.2)

∞∑

n=1

(α)n

n
Un(α, β, µ, η, ρ(k); z) =

∞∑

k=0

Rk [ψ(µ + ρ(k)) + ψ(µ + α + β + η + ρ(k))

−ψ(µ + β + ρ(k))− ψ(µ + η + ρ(k))]
zk

k!
(<(µ + β) > 0; <(µ + η) > 0; µ /∈ Z−0 ; <(ρ(k)) ≥ 0 for k ∈ N0 := N ∪ {0}) ,

provided that each of the series involved converges absolutely.

Theorem 3. Let {Rk}∞k=0 be an arbitrary bounded sequence of complex numbers
and set
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Vn(α, β, µ, η, ρ(k); z) :=
∞∑

k=0

Rk
Γ(µ + ρ(k))Γ(α + n + ρ(k))

Γ(µ + α + β + n + ρ(k))

· 3F2

[
α + n + ρ(k), α + β, −η;

µ + α + β + n + ρ(k), α + ρ(k); 1
]

zk

k!
.

Then we get

(2.3)

∞∑

n=1

1
n

Vn(α, β, µ, η, ρ(k); z) =
∞∑

k=0

Rk
Γ(α + ρ(k))Γ(µ + η + ρ(k))

Γ(µ + α + β + η + ρ(k))

· [ψ(µ + ρ(k)) + ψ(µ + α + β + η + ρ(k))− ψ(µ + β)− ψ(µ + η + ρ(k))]
zk

k!
(<(µ + β) > 0; <(µ + η) > 0; µ /∈ Z−0 ; <(ρ(k)) ≥ 0 for k ∈ N0

)
,

provided that each of the series involved converges absolutely.

Proof of Theorems 2 and 3. For sake of convenience, let the left-hand side of the (2.2)
be denoted by I. Then, substituting for Un from (2.1) and applying the definitions
(1.3) and (1.4), we have

I =
∞∑

n=1

Γ(α + n)
n Γ(α)

∞∑

k=0

Rk
Γ(µ + ρ(k))Γ(µ + α + β + η + ρ(k))

Γ(µ + η + ρ(k))Γ(µ + α + β + n + ρ(k))

·
{ ∞∑

l=0

Γ(α + n + l) Γ(α)Γ(µ + α + β + n + ρ(k)) (α + β)l (−η)l

Γ(α + n) Γ(α + l) Γ(µ + α + β + n + ρ(k) + l) l!

}
zk

k!
.

(2.4)

=
∞∑

k=0

Rk
Γ(µ + ρ(k))Γ(µ + α + β + η + ρ(k))
Γ(µ + η + ρ(k))Γ(µ + α + β + ρ(k))

∞∑

l=0

(α + β)l (−η)l

(µ + α + β + ρ(k))l l!

·
{ ∞∑

n=1

(α + l)n

n (µ + α + β + ρ(k) + l)n

}
zk

k!
,

where the inversion of the order of summation can be justified by the absolute
convergence of the series involved. The innermost series in (2.4) is summable by
means of the well-known result (1.2). We thus have

I =
∞∑

k=0

Rk
Γ(µ + ρ(k))Γ(µ + α + β + η + ρ(k))
Γ(µ + η + ρ(k))Γ(µ + α + β + ρ(k))

·
{ ∞∑

l=0

(α + β)l (−η)l

(µ + α + β + ρ(k))l l!
Ψ(µ + α + β + ρ(k) + l)−Ψ(µ + β + ρ(k))

}
zk

k!
,
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provided that <(µ + β) > 0, µ /∈ Z−0 , <(ρ(k)) ≥ 0 for all k ∈ N0.
Now we have
(2.5)

I =
∞∑

k=0

[
Rk

Γ(µ + ρ(k))Γ(µ + α + β + η + ρ(k))
Γ(µ + η + ρ(k))Γ(µ + α + β + ρ(k))

·
{ ∞∑

l=0

(α + β)l (−η)l

(µ + α + β + ρ(k))l l!
[Ψ(µ + α + β + ρ(k) + l)−Ψ(µ + α + β + ρ(k))]

+ [Ψ(µ + α + β + ρ(k))−Ψ(µ + β + ρ(k))] 2F1

[
α + β,−η;

µ + α + β + ρ(k); 1
]}]

zk

k!
.

Upon using the following known summation formula [5, p. 380, Eq. (2.5)]:

(2.6)

∞∑

n=0

(a)n(b)n

n!(c)n
[ψ(c + n)− ψ(c)]

=
Γ(c)Γ(c− a− b)
Γ(c− a)Γ(c− b)

[ψ(c− a) + ψ(c− b)− ψ(c)− ψ(c− a− b)]
(<(c− a− b) > 0; c /∈ Z−0

)
,

and Gauss’s well-known summation theorem for 2F1(a, b; c; 1) (see, e.g., [16, p. 64,
Eq. (7)]; see also [12]), after a little simplification, we are easily led to the desired
result (2.2). ¤

The equality (2.3) in Theorem 3 will be established in a similar way as in the
proof of equality (2.2).

Remark. The results [14, Theorem 3] look very similar to those in Theorems 2 and
3 here. Yet, it is easy to see that the results in Theorems 2 and 3 here are neither
special nor general cases of those in [14, Theorem 3] and vice versa.

3. Definition and Existence Conditions of H-function

A lot of research work has recently come up on the study and development of a
function that is more general than the Fox H-function (see, e.g., [10, 11]), popularly
known as H-function. It was introduced by Inayat-Hussain [6, 7] and now stands on
a fairly firm footing through the following contributions of various authors [3, 4, 6,
7, 9, 10].
The H-function is defined and represented in the following manner [6]:

(3.1) H
m,n
p,q [z] = H

m,n
p,q

[
z
∣∣∣
(aj ,αj ,Aj)1,n,(aj ,αj)n+1,p

(bj ,βj)1,m,(bj ,βj ,Bj)m+1,q

]
=

1
2πi

∫

L
zξ φ(ξ) dξ,
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where z 6= 0 and

(3.2) φ(ξ) :=

m∏

j=1

Γ(bj − βjξ)
n∏

j=1

{Γ(1− aj + αjξ)}Aj

q∏

j=m+1

{Γ(1− bj + βjξ)}Bj

p∏

j=n+1

Γ(aj − αjξ)

.

It may be noted that the φ(ξ) contains fractional powers of some of the Gamma
functions. Here z may be real or complex but is not equal to zero, and an empty
product is interpreted as unity; m, n, p, and q are integers such that 1 ≤ m ≤ q,
0 ≤ n ≤ p; αj > 0 (j = 1, . . . , p), βj > 0 (j = 1, . . . , q) and aj (j = 1, . . . , p) and
bj (j = 1, . . . , q) are complex numbers. The exponents Aj (j = 1, . . . , n) and Bj

(j = m + 1, . . . , q) take on non-integer values.
The nature of the contour L, sufficient conditions of convergence of defining integral
(3.1) and other details about the H-function can be seen in [4, 6, 7].

The behavior of the H-function for small values of |z| follows easily from a result
given by Rathie [9]:

H
m,n
p,q [z] = o (|z|α) as |z| → 0,

where

α = min
1≤j≤m

<
(

bj

βj

)
.

The following series representation for the H-function given by Saxena et al. [11]
will be required later on:

(3.3) H
m,n
p,q

[
z
∣∣∣
(aj ,αj ,Aj)1,n,(aj ,αj)n+1,p

(bj ,βj)1,m,(bj ,βj ,Bj)m+1,q

]
=

∞∑

k=0

m∑

h=1

f(ζ) zζ ,

where

(3.4) f(ζ) =

m∏
j=1

j 6=h

Γ(bj − βjζ)
n∏

j=1

{Γ(1− aj + αjζ)}Aj

q∏

j=m+1

{Γ(1− bj + βjζ)}Bj

p∏

j=n+1

Γ(aj − αjζ)

(−1)k

k!βh

and

(3.5) ζ = ζ(h, k) =
bh + k

βh
.

The function H makes sense and defines an analytic function of z in the following
two cases [3]:
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(i) 0 < |z| < ∞ and

(3.6) µ1 =
m∑

j=1

|βj |+
n∑

j=1

|αjAj | −
q∑

j=m+1

|βjBj | −
p∑

j=n+1

|αj | > 0;

(ii) µ1 = 0, 0 < |z| < τ−1 and

(3.7) τ :=





m∏

j=1

(βj)−βj









n∏

j=1

(αj)Ajαj









p∏

j=n+1

(αj)αj









q∏

j=m+1

(βj)−Bjβj



 .

4. Functional Relations Involving Generalized Mellin-Barnes
Type of Contour Integral

Here we give two interesting double summation formulas involving the H-function
asserted by the following theorem.

Theorem 4. If each of the series involved converges absolutely, the following for-
mulas hold :

(4.1)

∞∑

n=1

(α)n

n

∞∑

l=0

(α + n)l(α + β)l(−η)l

(α)ll!

·Hm,n+2
p+2,q+2

[
z
∣∣∣
(1−µ,C;1),(1−µ−α−β−η,C;1),(aj ,αj ;Aj)1,n,(aj ,αj)n+1,p

(bj ,βj)1,m,(bj ,βj ;Bj)m+1,q ,(1−µ−η,C;1),(1−µ−α−β−n−l,C;1)

]

=
m∑

h=1

∞∑

k=0

(−1)kf(ς(h, k))
Bh

[ψ(µ + Cς(h, k)) + ψ(µ + α + β + η + Cς(h, k))

−ψ(µ + β + Cς(h, k))− ψ(µ + η + Cς(h, k))]
zς(h,k)

k!
and

(4.2)

∞∑

n=1

1
n

∞∑

l=0

(α + β)l(−η)l

l!

·Hm,n+3
p+3,q+2

[
z
∣∣∣
(1−µ,C;1),(1−α−n−l,C;1),(1−α,C;1),(aj ,αj ;Aj)1,n,(aj ,αj)n+1,p

(bj ,βj)1,m,(bj ,βj ;Bj)m+1,q ,(1−α−l,C;1),(1−µ−α−β−n−l,C;1)

]

=
m∑

h=1

∞∑

k=0

(−1)kf(ς(h, k))
Bh

Γ(α + Cς(h, k))Γ(µ + η + Cς(h, k))
Γ(µ + α + β + η + Cς(h, k))

· [ψ(µ + Cς(h, k)) + ψ(µ + α + β + η + Cς(h, k))

−ψ(µ + β)− ψ(µ + η + Cς(h, k))]
zς(h,k)

k!
,

where C > 0, <(µ + β) > 0, <(µ + η) > 0, µ 6∈ Z−0 , and f(ς) and ς(h, k) are given
in (3.4) and (3.5), respectively.
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Proof. In view of the H-function representation (3.3), we apply Theorem 2 by setting

ρ ≡ ρ(k) = C ς(h, k) (C > 0) and Rk =
(−1)kf(ς(h, k))

Bh
(k ∈ N0), where f(ς) and

ς(h, k) are defined by (3.4) and (3.5), respectively. Then we have
(4.3)

∞∑

n=1

(α)n

n

∞∑

k=0

(−1)kf(ς(h, k))
Bh

Γ(µ + C ς(h, k)) Γ(µ + α + β + η + C ς(h, k))
Γ(µ + η + C ς(h, k))Γ(µ + α + β + n + C ς(h, k))

· 3F2

[
α + n, α + β, −η; µ + α + β + n + C ς(h, k), α; 1

] zk

k!

=
∞∑

k=0

(−1)kf(ς(h, k))
Bh

[ψ(µ + C ς(h, k)) + ψ(µ + α + β + η + C ς(h, k))

−ψ(µ + β + C ς(h, k))− ψ(µ + η + C ς(h, k))]
zk

k!
.

Now, replacing z by z1/Bh in (4.3) and multiplying each side of equality (4.3) by
zbh/Bh , then summing both sides of the resulting equations from h = 1 to h = m

(≤ q), we get
(4.4)

m∑

h=1

[ ∞∑

n=1

(α)n

n

∞∑

k=0

(−1)kf(ς(h, k))
Bh

Γ(µ + C ς(h, k)) Γ(µ + α + β + η + C ς(h, k))
Γ(µ + η + C ς(h, k))Γ(µ + α + β + n + C ς(h, k))

· 3F2

[
α + n, α + β, −η;µ + α + β + n + C ς(h, k), α; 1

] zk+bh/Bh

k!

]

=
m∑

h=1

[ ∞∑

k=0

(−1)kf(ς(h, k))
Bh

[
ψ(µ + C ς(h, k)) + ψ(µ + α + β + η + C ς(h, k))

− ψ(µ + β + C ς(h, k))− ψ(µ + η + C ς(h, k))
]] zk+bh/Bh

k!
.

This, in view of (3.3), proves the required result (4.1).
A similar argument as in the proof of (4.1) will establish the formula (4.2). This

completes the proof of Theorem 4. ¤

5. Special Cases and Concluding Remarks

In this section we briefly consider another variation of the results derived in the
preceding sections. On account of the most general nature of the H-function in
our main results given by (4.1) and (4.2), a large number of infinite series relations
involving simpler functions can be easily obtained as their special cases. Yet, as an
illustration, a few interesting special cases will be considered as follows:
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(i) For α + β = ν, η = −β, and µ = λ − ν, the H-function reduces to the
familiar Fox H-function. Then the functional relations (4.1) and (4.2) yield
equalities (3.10) and (3.11) in Chen and Srivastava [5, p. 385].

(ii) If we set η = 1 in (4.1) and (4.2) and give some suitable parametric replace-
ment in the resulting identities, we can arrive at the equalities (4.1) and
(4.2) in Saxena [10, pp. 128-129].

(iii) If we set α = ν, µ = λ−α, η = −β and ν + β = α in Theorems 2 and 3, we
are led to Theorems 3 and 4 in [5], respectively.

Theorem 4 gives a further generalization of the functional relations (3.10) and (3.11)
in [5, p. 385].
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