• 제목/요약/키워드: Generalized harmonic numbers

검색결과 18건 처리시간 0.019초

GENERALIZED HARMONIC NUMBER IDENTITIES AND A RELATED MATRIX REPRESENTATION

  • Cheon, Gi-Sang;El-Mikkawy Moawwad E.A.
    • Journal of the Korean Mathematical Society
    • /
    • 제44권2호
    • /
    • pp.487-498
    • /
    • 2007
  • In this paper, we obtain important combinatorial identities of generalized harmonic numbers using symmetric polynomials. We also obtain the matrix representation for the generalized harmonic numbers whose inverse matrix can be computed recursively.

ON THE p-ADIC VALUATION OF GENERALIZED HARMONIC NUMBERS

  • Cagatay Altuntas
    • Bulletin of the Korean Mathematical Society
    • /
    • 제60권4호
    • /
    • pp.933-955
    • /
    • 2023
  • For any prime number p, let J(p) be the set of positive integers n such that the numerator of the nth harmonic number in the lowest terms is divisible by this prime number p. We consider an extension of this set to the generalized harmonic numbers, which are a natural extension of the harmonic numbers. Then, we present an upper bound for the number of elements in this set. Moreover, we state an explicit condition to show the finiteness of our set, together with relations to Bernoulli and Euler numbers.

LOG-SINE AND LOG-COSINE INTEGRALS

  • Choi, Junesang
    • Honam Mathematical Journal
    • /
    • 제35권2호
    • /
    • pp.137-146
    • /
    • 2013
  • Motivated essentially by their potential for applications in a wide range of mathematical and physical problems, the log-sine and log-cosine integrals have been evaluated, in the existing literature on the subject, in many different ways. The main object of this paper is to present explicit evaluations of some families of log-sine and log-cosine integrals by making use of the familiar Beta function.

EULER SUMS OF GENERALIZED HYPERHARMONIC NUMBERS

  • Xu, Ce
    • Journal of the Korean Mathematical Society
    • /
    • 제55권5호
    • /
    • pp.1207-1220
    • /
    • 2018
  • The generalized hyperharmonic numbers $h^{(m)}_n(k)$ are defined by means of the multiple harmonic numbers. We show that the hyperharmonic numbers $h^{(m)}_n(k)$ satisfy certain recurrence relation which allow us to write them in terms of classical harmonic numbers. Moreover, we prove that the Euler-type sums with hyperharmonic numbers: $$S(k,m;p):=\sum\limits_{n=1}^{{\infty}}\frac{h^{(m)}_n(k)}{n^p}(p{\geq}m+1,\;k=1,2,3)$$ can be expressed as a rational linear combination of products of Riemann zeta values and harmonic numbers. This is an extension of the results of Dil [10] and $Mez{\ddot{o}}$ [19]. Some interesting new consequences and illustrative examples are considered.

ON CONGRUENCES INVOLVING THE GENERALIZED CATALAN NUMBERS AND HARMONIC NUMBERS

  • Koparal, Sibel;Omur, Nese
    • Bulletin of the Korean Mathematical Society
    • /
    • 제56권3호
    • /
    • pp.649-658
    • /
    • 2019
  • In this paper, we prove some congruences involving the generalized Catalan numbers and harmonic numbers modulo $p^2$, one of which is $$\sum\limits_{k=1}^{p-1}k^2B_{p,k}B_{p,k-d}{\equiv}4(-1)^d\{{\frac{1}{3}}d(2d^2+1)(4pH_d-1)-p\({\frac{26}{9}}d^3+{\frac{4}{3}}d^2+{\frac{7}{9}}d+{\frac{1}{2}}\)\}\;(mod\;p^2)$$, where a prime number p > 3 and $1{\leq}d{\leq}p$.

APPLICATIONS OF CLASS NUMBERS AND BERNOULLI NUMBERS TO HARMONIC TYPE SUMS

  • Goral, Haydar;Sertbas, Doga Can
    • Bulletin of the Korean Mathematical Society
    • /
    • 제58권6호
    • /
    • pp.1463-1481
    • /
    • 2021
  • Divisibility properties of harmonic numbers by a prime number p have been a recurrent topic. However, finding the exact p-adic orders of them is not easy. Using class numbers of number fields and Bernoulli numbers, we compute the exact p-adic orders of harmonic type sums. Moreover, we obtain an asymptotic formula for generalized harmonic numbers whose p-adic orders are exactly one.

CERTAIN FORMULAS INVOLVING EULERIAN NUMBERS

  • Choi, Junesang
    • Honam Mathematical Journal
    • /
    • 제35권3호
    • /
    • pp.373-379
    • /
    • 2013
  • In contrast with numerous identities involving the binomial coefficients and the Stirling numbers of the first and second kinds, a few identities involving the Eulerian numbers have been known. The objective of this note is to present certain interesting and (presumably) new identities involving the Eulerian numbers by mainly making use of Worpitzky's identity.

NOTE ON STIRLING POLYNOMIALS

  • Choi, Junesang
    • Journal of the Chungcheong Mathematical Society
    • /
    • 제26권3호
    • /
    • pp.591-599
    • /
    • 2013
  • A large number of sequences of polynomials and numbers have arisen in mathematics. Some of them, for example, Bernoulli polynomials and numbers, have been investigated deeply and widely. Here we aim at presenting certain interesting and (potentially) useful identities involving mainly in the second-order Eulerian numbers and Stirling polynomials, which seem to have not been given so much attention.

FURTHER LOG-SINE AND LOG-COSINE INTEGRALS

  • Choi, Junesang
    • Journal of the Chungcheong Mathematical Society
    • /
    • 제26권4호
    • /
    • pp.769-780
    • /
    • 2013
  • Motivated essentially by their potential for applications in a wide range of mathematical and physical problems, the log-sine and log-cosine integrals have been evaluated, in the existing literature on the subject, in many different ways. Very recently, Choi [6] presented explicit evaluations of some families of log-sine and log-cosine integrals by making use of the familiar Beta function. In the present sequel to the investigation [6], we evaluate the log-sine and log-cosine integrals involved in more complicated integrands than those in [6], by also using the Beta function.

NEW CONGRUENCES WITH THE GENERALIZED CATALAN NUMBERS AND HARMONIC NUMBERS

  • Elkhiri, Laid;Koparal, Sibel;Omur, Nese
    • Bulletin of the Korean Mathematical Society
    • /
    • 제58권5호
    • /
    • pp.1079-1095
    • /
    • 2021
  • In this paper, we give new congruences with the generalized Catalan numbers and harmonic numbers modulo p2. One of our results is as follows: for prime number p > 3, $${\sum\limits_{k=(p+1)/2}^{p-1}}\;k^2B_{p,k}B_{p,k-(p-1)/2}H_k{\equiv}(-1)^{(p-1)/2}\(-{\frac{521}{36}}p-{\frac{1}{p}}-{\frac{41}{12}}+pH^2_{3(p-1)/2}-10pq^2_p(2)+4\({\frac{10}{3}}p+1\)q_p(2)\)\;(mod\;p^2),$$ where qp(2) is Fermat quotient.