• Title/Summary/Keyword: Generalized Estimating Equations (GEE)

Search Result 25, Processing Time 0.022 seconds

A step-by-step guide to Generalized Estimating Equations using SPSS in dental research (치의학 분야에서 SPSS를 이용한 일반화 추정방정식의 단계별 안내)

  • Lim, Hoi-Jeong;Park, Su-Hyeon
    • The Journal of the Korean dental association
    • /
    • v.54 no.11
    • /
    • pp.850-864
    • /
    • 2016
  • The Generalized Estimating Equations (GEE) approach is a widely used statistical method for analyzing longitudinal data and clustered data in clinical studies. In dentistry, due to multiple outcomes obtained from one patient, the outcomes produced from an individual patient are correlated with one another. This study focused on the basic ideas of GEE and introduced the types of covariance matrix and working correlation matrix. The quasi-likelihood information criterion (QIC) and quasi-likelihood information criterion approximation ($QIC_u$) were used to select the best working correlation matrix and the best fitting model for the correlated outcomes. The purpose of this study is to show a detailed process for the GEE analysis using SPSS software along with an orthodontic miniscrew example, and to help understand how to use GEE analysis in dental research.

  • PDF

Small Sample Characteristics of Generalized Estimating Equations for Categorical Repeated Measurements (범주형 반복측정자료를 위한 일반화 추정방정식의 소표본 특성)

  • 김동욱;김재직
    • The Korean Journal of Applied Statistics
    • /
    • v.15 no.2
    • /
    • pp.297-310
    • /
    • 2002
  • Liang and Zeger proposed generalized estimating equations(GEE) for analyzing repeated data which is discrete or continuous. GEE model can be extended to model for repeated categorical data and its estimator has asymptotic multivariate normal distribution in large sample sizes. But GEE is based on large sample asymptotic theory. In this paper, we study the properties of GEE estimators for repeated ordinal data in small sample sizes. We generate ordinal repeated measurements for two groups using two methods. Through Monte Carlo simulation studies we investigate the empirical type 1 error rates, powers, relative efficiencies of the GEE estimators, the effect of unequal sample size of two groups, and the performance of variance estimators for polytomous ordinal response variables, especially in small sample sizes.

Property of regression estimators in GEE models for ordinal responses

  • Lee, Hyun-Yung
    • Journal of the Korean Data and Information Science Society
    • /
    • v.23 no.1
    • /
    • pp.209-218
    • /
    • 2012
  • The method of generalized estimating equations (GEEs) provides consistent esti- mates of the regression parameters in a marginal regression model for longitudinal data, even when the working correlation model is misspecified (Liang and Zeger, 1986). In this paper we compare the estimators of parameters in GEE approach. We consider two aspects: coverage probabilites and efficiency. We adopted to ordinal responses th results derived from binary outcomes.

ELCIC: An R package for model selection using the empirical-likelihood based information criterion

  • Chixiang Chen;Biyi Shen;Ming Wang
    • Communications for Statistical Applications and Methods
    • /
    • v.30 no.4
    • /
    • pp.355-368
    • /
    • 2023
  • This article introduces the R package ELCIC (https://cran.r-project.org/web/packages/ELCIC/index.html), which provides an empirical likelihood-based information criterion (ELCIC) for model selection that includes, but is not limited to, variable selection. The empirical likelihood is a semi-parametric approach to draw statistical inference that does not require distribution assumptions for data generation. Therefore, ELCIC is more robust and versatile in the context of model selection compared to the currently existing information criteria. This paper illustrates several applications of ELCIC, including its use in generalized linear models, generalized estimating equations (GEE) for longitudinal data, and weighted GEE (WGEE) for missing longitudinal data under the mechanisms of missing at random and dropout.

Comparison of GEE Estimation Methods for Repeated Binary Data with Time-Varying Covariates on Different Missing Mechanisms (시간-종속적 공변량이 포함된 이분형 반복측정자료의 GEE를 이용한 분석에서 결측 체계에 따른 회귀계수 추정방법 비교)

  • Park, Boram;Jung, Inkyung
    • The Korean Journal of Applied Statistics
    • /
    • v.26 no.5
    • /
    • pp.697-712
    • /
    • 2013
  • When analyzing repeated binary data, the generalized estimating equations(GEE) approach produces consistent estimates for regression parameters even if an incorrect working correlation matrix is used. However, time-varying covariates experience larger changes in coefficients than time-invariant covariates across various working correlation structures for finite samples. In addition, the GEE approach may give biased estimates under missing at random(MAR). Weighted estimating equations and multiple imputation methods have been proposed to reduce biases in parameter estimates under MAR. This article studies if the two methods produce robust estimates across various working correlation structures for longitudinal binary data with time-varying covariates under different missing mechanisms. Through simulation, we observe that time-varying covariates have greater differences in parameter estimates across different working correlation structures than time-invariant covariates. The multiple imputation method produces more robust estimates under any working correlation structure and smaller biases compared to the other two methods.

Use of Pseudo-Likelihood Estimation in Taylor's Power Law with Correlated Responses

  • Park, Bum-Hee;Park, Heung-Sun
    • Communications for Statistical Applications and Methods
    • /
    • v.15 no.6
    • /
    • pp.993-1002
    • /
    • 2008
  • Correlated responses have been widely analyzed since Liang and Zeger (1986) introduced the famous Generalized Estimating Equations(GEE). However, their variance functions were restricted to known quantifies multiplied by scale parameter. In so many industries and academic/research fields, power-of-the-mean variance function is one of the common variance function. We suggest GEE-type pseudolikelihood estimation based on the power-of-the-mean variance using existing software and investigate it's efficiency for different working correlation matrices.

Comparison of GEE Estimators Using Imputation Methods (대체방법별 GEE추정량 비교)

  • 김동욱;노영화
    • The Korean Journal of Applied Statistics
    • /
    • v.16 no.2
    • /
    • pp.407-426
    • /
    • 2003
  • We consider the missing covariates problem in generalized estimating equations(GEE) model. If the covariate is partially missing, GEE can not be calculated. In this paper, we study the performance of 7 imputation methods to handle missing covariates in GEE models, and the properties of GEE estimators are investigated after missing covariates are imputed for ordinal data of repeated measurements. The 7 imputation methods include i) Naive Deletion ii) Sample Average Imputation iii) Row Average Imputation iv) Cross-wave Regression Imputation v) Carry-over Imputation vi) Bayesian Bootstrap vii) Approximate Bayesian Bootstrap. A Monte-Carlo simulation is used to compare the performance of these methods. For the missing mechanism generating the missing data, we assume ignorable nonresponse. Furthermore, we generate missing covariates with or without considering wave nonresp onse patterns.

Note on Working Correlation in the GEE of Longitudinal Counts Data

  • Jeong, Kwang-Mo
    • Communications for Statistical Applications and Methods
    • /
    • v.18 no.6
    • /
    • pp.751-759
    • /
    • 2011
  • The method of generalized estimating equations(GEE) is widely used in the analysis of a correlated dataset that consists of repeatedly observed responses within subjects. The GEE uses a quasi-likelihood equations to find the parameter estimates without assuming a specific distribution for the correlated responses. In this paper we study the importance of specifying the working correlation structure appropriately in fitting GEE for correlated counts data. We investigate the empirical coverages of confidence intervals for the regression coefficients according to four kinds of working correlations where one structure should be specified by the users. The confidence intervals are computed based on the asymptotic normality and the sandwich variance estimator.

A marginal logit mixed-effects model for repeated binary response data

  • Choi, Jae-Sung
    • Journal of the Korean Data and Information Science Society
    • /
    • v.19 no.2
    • /
    • pp.413-420
    • /
    • 2008
  • This paper suggests a marginal logit mixed-effects for analyzing repeated binary response data. Since binary repeated measures are obtained over time from each subject, observations will have a certain covariance structure among them. As a plausible covariance structure, 1st order auto-regressive correlation structure is assumed for analyzing data. Generalized estimating equations(GEE) method is used for estimating fixed effects in the model.

  • PDF

Upgraded quadratic inference functions for longitudinal data with type II time-dependent covariates

  • Cho, Gyo-Young;Dashnyam, Oyunchimeg
    • Journal of the Korean Data and Information Science Society
    • /
    • v.25 no.1
    • /
    • pp.211-218
    • /
    • 2014
  • Qu et. al. (2000) proposed the quadratic inference functions (QIF) method to marginal model analysis of longitudinal data to improve the generalized estimating equations (GEE). It yields a substantial improvement in efficiency for the estimators of regression parameters when the working correlation is misspecified. But for the longitudinal data with time-dependent covariates, when the implicit full covariates conditional mean (FCCM) assumption is violated, the QIF can not provide more consistent and efficient estimator than GEE (Cho and Dashnyam, 2013). Lai and Small (2007) divided time-dependent covariates into three types and proposed generalized method of moment (GMM) for longitudinal data with time-dependent covariates. They showed that their GMM type II and GMM moment selection methods can be more ecient than GEE with independence working correlation (GEE-ind) in the case of type II time-dependent covariates. We develop upgraded QIF method for type II time-dependent covariates. We show that this upgraded QIF method can provide substantial gains in efficiency over QIF and GEE-ind in the case of type II time-dependent covariates.