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Abstract

The method of generalized estimating equations (GEEs) provides consistent esti-
mates of the regression parameters in a marginal regression model for longitudinal data,
even when the working correlation model is misspecified (Liang and Zeger, 1986). In
this paper we compare the estimators of parameters in GEE approach. We consider
two aspects: coverage probabilites and efficiency. We adopted to ordinal responses the
results derived from binary outcomes.

Keywords: Generalized estimating equations, ordinal responses, parameter estimation,
repeated measures.

1. Introduction

In medical research, disease can be measured with categorical data including a dichoto-
mous, polychotomous or ordinal score for conditions such as the presence or absence of
dysplasia or the severity of wheeze. Furthermore, the same observed unit can be assessed
by different medical investigators.

Clustered data are frequent in biological and medical experimental research. This includes
longitudinal studies, where individuals are observed over time (Agresti, 2002; Diggle et
al., 2002) or for other dimensions such as distance to some origin (Singer and Andrade,
1986), and also in family studies (Ziegler et al., 1998; Yan and Fine, 2004). Cho (2010)
also recommended about the longitudinal data. In this context, Liang and Zeger (1986)
proposed the generalized estimating equations (GEE) approach, which not only models the
marginal means in terms of covariates but also incorporates the association between cluster
responses. For the case of clustered ordinal data Nores and Diez (2008) investigated some
properties of GEE according to working correlation structures. They compared the coverage
probability of confidence interval and the efficiency in the sense of variance estimates. The
asymptotic efficiency of a correctly specified exchangeable association structure relative to
the independence was discussed.

In this paper we study some properties of the estimators of marginal mean parameters
in the context of the GEE approach of Heagerty and Zeger (1996) for ordinal data. We
focus on two aspects: coverage probabilities and efficiency. For the first one, we made a
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simulation study and calculated empirical levels of the confidence intervals for regression
parameters based on the sandwich variance estimator. Lipsitz et al. (1991) studied these
coverage probabilities in binary responses for a sample size of 100. We considered 100, 120
clusters. Concerning efficiency, some other authors have investigated the loss of efficiency
that can occur when assuming different working association structures. However, their stud-
ies were confined to continuous or discrete data, principally binary outcomes. Mancl and
Leroux (1996) studied asymptotic efficiency by considering an independence working speci-
fication in relation to a correctly specified exchangeable association structure. Choi (2010)
suggested a mixed-effects model for analyzing split-plot data when there is a repeated mea-
sures factor that affects on the response variable. And Choi (2008a, 2008b, 2008c) suggested
a marginal probability model for analyzing repeated polytomous response data and binary
response data.

This article is organized as follows. Section 2 describes the notations in GEE model for
the ordinal responses. In Section 3 we show the simulation schemes used and the results
concerning confidence levels. The final section discusses the results obtained.

2. Notations in GEE model for ordinal responses

Suppose that a longitudinal study consists of ordinal responses with (J + 1) categories
and p-dimensional covariate vectors (Yit, xit), for i = 1, · · · , n and t = 1, · · · , ni, where
Yit denotes the observation for subject i at occasion t and the covariate vector xit can
be discrete or continuous. For simplicity we assume equal occasions, ni = T . Denote Yit
as a vector of J indicator variables, yit = (y1it, · · · , yJit)′ with yjit = 1 if response Yit = j

and 0 otherwise. Let πit and η
(j)
it represent the vector of marginal probabilities and the

marginal cumulative probabilities, respectively, where πit = (π
(1)
it , · · · , π

(J)
it )′ with π

(j)
it =

P (Yit = j|xit) = P (Y
(j)
it = 1|xit) and η

(j)
it = P (Yit ≤ j|xit) =

∑j
k=1 π

(k)
it . It can be

straightforwardly shown that E(yit) = πit and V ar(yit) = V it = diag(πit) −πitπ
′

it. The
cumulative logit model with proportional odds assumption for describing the dependence of
Yit on xit is given by

logit
(
η
(j)
it

)
= log

(
η
(j)
it

1− η(j)it

)
= λj + x′itβ, for j = 2, · · · , J (2.1)

where the intercepts λ1, · · · , λJ satisfy λ1 ≤ · · · ≤ λJ , is the vector of regression coefficients

with β = (β1, · · · , βp)′, and ζ
(j)
it is the jth element of a J- dimensional linear predictor

ζit = (ζ
(1)
it , · · · , ζ

(J)
it )′. Since π

(1)
it = η

(1)
it and

π
(j)
it = η

(j)
it − η

(j−1)
it

= P (Yit = j|xit)− P (Yit = j − 1|xit)

=
exp

(
η
(j)
it

)
1 + exp

(
η
(j)
it

)− exp
(
η
(j−1)
it

)
1 + exp

(
η
(j−1)
it

), for j = 2, · · · , J

the linear predictor ζit can be rewritten as ζ′it = Z ′itθ with the parameter vector θ =
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(λ1, · · · , λJ , β′)′ and the J × (J + p) design matrix

Z ′it =

1 X ′it
. . . X ′it

1 X ′it


A J-dimensional link function g connects πit and the linear predictor Z ′itθ as πit =
g−1(Z ′itθ). Denote the responses, the marginal probabilities and the design matrix for
subject i as Y i = (y′i1, · · · ,y′iT ), πi = (π′i1, · · · , π′iT ), and Zi = (Zi1, · · · , ZiT )′TJ×(J+P ),
respectively. The multivariate generalized estimating equations proposed by Lipsitz et al.
(1994) and Liang and Zeger (1986) for estimating θ is the solution to

n∑
i=1

D′iV
′−1

i (Y i − πi) (2.2)

where Di = ∂πi/∂θ = (D′i1, · · · , D′iT )′ with the jth row vector of Dit expressed by

(∂π
(j)
it /∂λ1, · · · , ∂π

(j)
it /∂βp)′ for j = 1, · · · , J, t = 1, · · · , T , and V i = A

1/2
i Ri(α)A

1/2
i . Here

Ai = diag(Ai1, · · · ,AiT ) with diagonal blockAiT = diag(π
(1)
it (1−π(1)

it ), · · · , π(J)
it (1−π(J)

it )),
the ‘working correlation matrix Ri(α) is the correlation of Y i, and α is a vector of param-
eters involved in the working correlation structure. In general, V i 6= V ar(V i). Liang and
Zeger (1986) proposed a ‘working’ correlation matrix to gain efficiency in estimating θ. The
solution to (2.2) is a consistent estimate of θ for a variety of settings of the TJ×TJ ‘working’
correlation matrices. Let Ri(α) be expressed as follows:

Ri(α) =


M i1 Bi12 · · · BiT1

Bi21 M i2 · · · BiT2

...
...

. . .
...

BiT1 BiT2 · · · M iT


TJ×TJ

where the tth diagonal block M it = A
−1/2
it V itA

−1/2
it denoted throughout by πi for t =

1, · · · , T, and the off-diagonal matrix Bist = A
−1/2
is E[(yis−πis)(yit−πit)

′] A
−1/2
it parame-

terized by α for s 6= t. The correlations of longitudinal ordinal data include two parts. One
is the correlation between the repeated responses for subject i specified by Ri(α) and the
other is the correlation between ordinal categories specified by Bist. The estimation of θ
based on the Fisher scoring algorithm and iterative proportional fitting can be obtained by
the geepack package in R software. Once the estimate of the parameter vector θ̂ is derived,
the standardized residual vector, êi = (ê′i1, · · · ,̂ eiT )′, can be computed with the element

vector êit = Â
−1/2

(yit − π̂it), where π̂it = g−1(Ẑ
′
itθ̂) for i = 1, · · · , n; t = 1, · · · , T .

In this article, four ‘working’ correlation matrices, independence (Ri(α) = I, the identity
matrix), AR(1) structure, exchangeable structure (Bist = B) and unspecified structure
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(Bist = B), are considered; namely

Rind,i(α) = ITJ×TJ , Rar(1),i(α) =


M i1 L L2 · · · LT−1

L M i2 L · · · LT−2

L2 L M i3 · · · LT−3

...
...

...
...

...

LT−1 LT−2 LT−3 · · · M iT

,

Rex,i(α) =


M i1 B · · · B
B M i2 · · · B
...

...
. . .

...
B B · · · M iT

 and Run,i(α) =


M i1 B12 · · · B1T

B21 M i2 · · · B2T

...
...

. . .
...

BT1 BT2 · · · M iT


for i = 1, · · · , n as well as the corresponding off-diagonal matrices are estimated by

L̂ =

∑T−1
t=1

∑n
i=1 êitê

′
i,t+1

(T − 1)(n− p)
, B̂ =

∑n
i=1

∑
s<t êisê

′
it

[
1

2

∑n
i=1 T (T − 1)]− p

,

B̂st =

∑n
i=1 êisê

′
it

n− p
for s 6= t = 1, · · · , T.

3. Coverage probabilities of the regression estimators

3.1. Example

As an illustration, we present an analysis for the dataset from Costa et al. (2006), which
consists of 48 patients suffering from rupture of the tendo achilles.

We assume the following GLM relationship

logit(P [Y ≤ j]) = αj + β1t+ β2x.

where t is time (t = 1, 2, 3) which is composed of 3 month, 6 month and 1 year and x is
treat (x = 1, 2; operativelyand nonoperatively). The response variable is a status of activity
(j = 1, 2, 3) those are normal sporting activity, walking, stair climbing and work activity.

Table 3.1 Estimated parameter estimates and their standard errors

Assumed working correlation α1 α2 β1 β2

Indep
0.99801) -1.5969 2.5521 3.1640

0.74642) 1.0865 1.3157 0.7364

Exchangeable
-4.7937 -1.6097 2.5864 3.1386
1.1675 1.0776 1.3003 0.7154

AR1
-4.7827 -1.5969 2.5521 3.1309
1.1781 1.0865 1.3157 0.7212

1) GEE estimate 2) Srandard Error (S. E.) of GEE estimate
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3.2. Simulation schemes

In order to study empirically the validity of inferences for the regression parameters in
the GEE approach of Heagerty and Zeger (1996), we conducted a simulation study. In

this section we present the study of the asymptotic efficiency of the estimator β̂I , using
an independence working specification, relative to β̂EX , assuming a correctly specified ex-
changeable association structure. For each element of β, the asymptotic relative efficiency
(ARE) is given by the ratio of the variance of the regression estimators.

To evaluate the performance of the proposed tests for the proportional odds model fit
in terms of type I error rate and the power, the simulated longitudinal ordinal data are
generated from the following models:

Model1; logit(P [Y ≤ j]) = αj + β1Dit + β2xit,

where the monotone difference intercepts are assigned by α = (−1.0, 0, 0.5)′, β1 = 0, β2 =
−0.1; Dit equals to 0 for i ≤ n/2 and 1 elsewhere, and xit ∼ U(−1, 1) for i = 1, · · · , n,
t = 1, 2, 3, j = 1, 2, 3 and n = (100, 120), ρ = (0.5, 0.7). Here D1i is time-stationary covariate
and Xit is a time-dependent covariate. The pairwise correlations between the observations
at the three occasions within a subject are assumed to be 0.5. The number of repitition is
set to be 1,000.

The simulation study has been implemented through R software and its library functions.
We may refer to a R Development Team (2006) for the R language and its environment.

3.3. Simulation results

The empirical coverage of confidence intervals for α1, α2, α3, β1 and β2 are listed in Table
3.2 through Table 3.5 according to the assumed working correlation structure, the sample
sizes, the nominal confidence level, and the correlation parameter ρ. The empirical coverages
attain the nominal confidence levels when n = (100, 120). When the true correlation struc-
ture is exchangeable with ρ = 0.5, the length of confidence intervals under the independence
working correlation are wider than the others.

The results of exchangeable correlation and AR1 are very similar when the true correlation
structure of repeated responses is exchangeable with ρ =0.5 or 0.7. As we see in Table
3.2 through Table 3.3 the lengths of confidence intervals for the exchangeable correlation
structure are little shorter than those under AR1 when the true correlation structure is
correctly assumed as exchangeable. On the other hand the empirical coverages of AR1 are
sometimes better than those of exchangeable working correlation specification.



214 Hyun Yung Lee

Table 3.2 Empirical coverages of confidence limits for α1, α2, α3, β1, and β2 among 1000 repetitions

when the true correlation structure is exchangeable with ρ =0. 5, 0. 7. (a) ρ = 0.5

n Assumed working correlation α
Confidence levels

α1 α2 α3 β1 β2

100

Indep

90%
0.9980 1) 0.9960 0.9970 0.8590 0.8570

0.7464 2) 0.7102 0.7319 1.0060 0.5771

95%
1.0000 0.9980 1.0000 0.9990 0.8570

0.8893 0.8462 0.8721 1.1990 0.6876

99%
1.0000 0.9990 1.0000 1.0000 0.9990

1.1710 1.1140 1.1480 1.5780 0.9051

Exchangeable

90%
0.9980 0.9960 0.8570 0.9980 0.7130

0.7459 0.7100 0.7328 1.0050 0.4643

95%
1.0000 0.9980 1.0000 0.9990 0.9930

0.8887 0.8459 0.8731 1.1970 0.5532

99%
1.0000 0.9990 1.0000 1.0000 0.9980

1.1700 1.1140 1.1490 1.5760 0.7281

AR1

90%
0.9980 0.8560 0.8570 0.9980 0.7150

0.7511 0.7144 0.7352 1.0080 0.4804

95%
1.0000 0.9980 1.0000 0.9990 0.9960

0.8949 0.8512 0.8760 1.2010 0.5723

99%
1.0000 0.9990 1.0000 1.0000 0.9980

1.1780 1.1200 1.1530 1.5810 0.7534

Var Ratio
Indep vs Uniform 1.0012 1.0007 0.9977 1.0026 1.5452

AR1vs Uniform 1.0140 1.0120 1.0070 1.0070 1.0710

120

Indep

90%
0.9260 0.8750 0.9300 0.9040 0.8360

0.6832 0.6459 0.6592 0.9182 0.5566

95%
0.9720 0.9560 0.9740 0.9350 0.9050

0.8140 0.7696 0.7855 1.0940 0.6632

99%
1.0000 0.9810 0.9990 0.9600 0.9950

1.0720 1.0130 1.0340 1.4400 0.8730

Exchangeable

90%
0.9070 0.8940 0.9320 0.9030 0.7540

0.6841 0.6466 0.6598 0.9190 0.4507

95%
0.9720 0.9560 0.9740 0.9350 0.8450

0.8151 0.7704 0.7861 1.0950 0.5370

99%
1.0000 0.9990 0.9990 0.9600 0.9920

1.0730 1.0140 1.0350 1.4410 0.7069

AR1

90%
0.9450 0.8540 0.9290 0.9040 0.8120

0.6873 0.6491 0.6626 0.9219 0.4779

95%
0.9720 0.9550 0.9730 0.9540 0.8410

0.8190 0.7734 0.7895 1.0980 0.5694

99%
0.9990 1.0000 0.9980 0.9790 0.9930

1.0780 1.0180 1.0390 1.4460 0.7495

Var Ratio
Indep vs Uniform 0.9974 0.9980 0.9983 0.9985 1.5249

AR1vs Uniform 1.0090 1.0080 1.0090 1.0060 1.1240

1) Empirical coverage of confidence interval 2) Length of confidence interval
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Table 3.3 Empirical coverages of confidence limits for α1, α2, α3, β1 and β2 among 1000 repetitions when

the true correlation structure is exchangeable with ρ = 0.5, 0.7. (b) ρ = 0.7

n Assumed working correlation α
Confidence levels

α1 α2 α3 β1 β2

100

Indep

90%
0.9620 1) 0.9680 0.8750 0.9630 0.7490

0.8153 2) 0.7738 0.7941 1.0980 0.5846

95%
0.9840 0.9780 0.8930 0.9790 0.8670

0.9714 0.9220 0.9492 1.3080 0.6966

99%
0.9960 0.9940 0.9960 0.9900 0.8950

1.2790 1.2140 1.2460 1.7220 0.9169

Exchangeable

90%
0.9630 0.8770 0.8760 0.9620 0.5420

0.8167 0.7752 0.7968 1.0990 0.3796

95%
0.9830 0.9790 0.8920 0.9780 0.8500

0.9731 0.9237 0.9493 1.3090 0.4522

99%
0.9970 0.9940 0.9960 0.9890 0.8920

1.2810 1.2160 1.2500 1.7230 0.5953

AR1

90%
0.9650 0.8760 0.8780 0.9610 0.7310

0.8229 0.7797 0.7995 1.1030 0.4112

95%
0.9850 0.9790 0.8910 0.9770 0.8530

0.9805 0.9290 0.9526 1.3140 0.4900

99%
0.9970 0.9950 0.9960 0.9900 0.9770

1.2910 1.2230 1.2540 1.7290 0.6450

Var Ratio
Indep vs Uniform 0.9964 0.9963 0.9934 0.9988 2.3724

AR1vs Uniform 1.0150 1.0120 1.0070 1.0070 1.1740

120

Exchangeable

90%
0.9550 0.9550 0.8870 0.9080 0.8190

0.7487 0.7034 0.7244 1.0070 0.5569

95%
0.9780 0.9770 0.9330 0.9310 0.8880

0.8920 0.8381 0.8630 1.1990 0.6635

99%
1.0000 1.0000 0.9770 0.9770 0.9780

1.1740 1.1030 1.1360 1.5790 0.8734

Uniform

90%
0.9550 0.9100 0.8870 0.9080 0.6840

0.7496 0.7047 0.7258 1.0080 0.3656

95%
0.9780 0.9770 0.9330 0.9310 0.7530

0.8931 0.8396 0.8648 1.2010 0.4356

99%
1.0000 1.0000 0.9770 0.9770 0.9780

1.1760 1.1050 1.1380 1.5810 0.5734

AR1

90%
0.9550 0.9100 0.8870 0.8850 0.7750

0.7560 0.7095 0.7300 1.0120 0.3981

95%
0.9780 1.0000 0.9330 0.9540 0.8210

0.9008 0.8453 0.8698 1.2060 0.4743

99%
1.0000 1.0000 1.0000 0.9770 0.9560

1.1860 1.1130 1.1450 1.5870 0.6243

Var Ratio
Indep vs Uniform 0.9976 0.9963 0.9959 0.9973 2.3197

AR1vs Uniform 1.0170 1.0140 1.0120 1.0080 1.1850

1) Empirical coverage of confidence interval 2) Length of confidence interval
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Table 3.4 Empirical coverages of confidence limits for α1, α2, α3, β1 and β2 among 1000 repetitions when

the true correlation structure is AR1 with ρ = 0.5, 0.7. (a) ρ = 0.5

n Assumed working correlation α
Confidence levels

α1 α2 α3 β1 β2

100

Indep

90%
1.0000 1) 1.0000 0.8570 0.8570 0.5710

0.7150 2) 0.6852 0.6949 0.9583 0.5722

95%
1.0000 1.0000 1.0000 1.0000 0.8570

0.8519 0.8165 0.8280 1.1420 0.6818

99%
1.0000 1.0000 1.0000 1.0000 1.0000

1.1210 1.0750 1.0900 1.5030 0.8974

Exchangeable

90%
1.0000 0.8570 0.8570 0.8570 0.5710

0.7144 0.6846 0.6955 0.9566 0.4932

95%
1.0000 1.0000 1.0000 1.0000 1.0000

0.8512 0.8157 0.8287 1.1400 0.5877

99%
1.0000 1.0000 1.0000 1.0000 1.0000

1.1200 1.0740 1.0910 1.5000 0.7736

AR1

90%
1.0000 0.8570 0.8570 0.8570 0.5710

0.7127 0.6816 0.6917 0.9480 0.4674

95%
1.0000 1.0000 0.8570 1.0000 1.0000

0.8491 0.8121 0.8241 1.1300 0.5569

99%
1.0000 1.0000 1.0000 1.0000 1.0000

1.1180 1.0690 1.0850 1.4870 0.7331

Var Ratio
Indep vs Uniform 1.0070 1.0110 1.0090 1.0220 1.4990

AR1vs Uniform 1.0050 1.0090 1.0110 1.0180 1.1140

120

Indep

90%
0.8690 0.8920 0.8480 0.9040 0.8580

0.6570 0.6229 0.6353 0.8800 0.5516

95%
0.9020 0.9250 0.9250 0.9370 0.9010

0.7828 0.7422 0.7569 1.0490 0.6572

99%
0.9790 0.9680 0.9780 0.9900 0.9890

1.0300 0.9769 0.9963 1.3800 0.8651

Exchangeable

90%
0.8690 0.8920 0.8370 0.9040 0.8580

0.6570 0.6231 0.6358 0.8806 0.4790

95%
0.9020 0.9250 0.9250 0.9260 0.9020

0.7828 0.7424 0.7575 1.0490 0.5708

99%
0.9790 0.9680 0.9890 0.9900 0.9680

1.0300 0.9773 0.9972 1.3810 0.7513

AR1

90%
0.8690 0.8920 0.8700 0.9040 0.8490

0.6523 0.6182 0.6308 0.8727 0.4650

95%
0.9130 0.9250 0.9140 0.9260 0.9020

0.7772 0.7366 0.7516 1.0400 0.5540

99%
0.9790 0.9780 0.9890 0.9900 0.9780

1.0230 0.9696 0.9893 1.3690 0.7293

Var Ratio
Indep vs Uniform 1.0140 1.0150 1.0140 1.0170 1.4070

AR1vs Uniform 1.0140 1.0160 1.0160 1.0180 1.0610

1) Empirical coverage of confidence interval 2) Length of confidence interval
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Table 3.5 Empirical coverages of confidence limits for α1, α2, α3, β1 and β2 among 1000 repetitions when

the true correlation structure is AR1 with ρ = 0.5, 0.7. (b) ρ = 0.7

n Assumed working correlation α
Confidence levels

α1 α2 α3 β1 β2

100

Indep

90%
1.0000 1) 0.8570 0.8570 0.8570 0.7140

0.7787 2) 0.7531 0.7703 1.0600 0.5761

95%
1.0000 1.0000 0.8570 1.0000 0.8570

0.9278 0.8974 0.9178 1.2630 0.6864

99%
1.0000 1.0000 1.0000 1.0000 1.0000

1.2210 1.1810 1.2080 1.6620 0.9035

Exchangeable

90%
1.0000 0.8570 0.8570 0.8570 0.7140

0.7791 0.7533 0.7720 1.0590 0.4124

95%
1.0000 1.0000 0.8570 1.0000 0.8570

0.9282 0.8976 0.9198 1.2620 0.4914

99%
1.0000 1.0000 1.0000 1.0000 1.0000

1.2220 1.1820 1.2110 1.6610 0.6469

AR1

90%
1.0000 0.8570 0.8570 0.8570 0.7140

0.7781 0.7497 0.7647 1.0480 0.3770

95%
1.0000 0.8570 0.8570 1.0000 0.7140

0.9271 0.8933 0.9112 1.2490 0.4492

99%
1.0000 1.0000 1.0000 1.0000 1.0000

1.2200 1.1760 1.1990 1.6440 0.5913

Var Ratio
Indep vs Uniform 1.0020 1.0090 1.0150 1.0210 2.3350

AR1vs Uniform 1.0020 1.0100 1.0190 1.0200 1.1970

120

Indep

90%
0.8630 0.8880 0.8610 0.8710 0.8460

0.7285 0.6903 0.7051 0.9764 0.5528

95%
0.9160 0.9240 0.9230 0.9240 0.9220

0.8680 0.8225 0.8401 1.1630 0.6587

99%
0.9880 0.9770 0.9880 1.0000 0.9870

1.1430 1.0830 1.1060 1.5310 0.8670

Exchangeable

90%
0.8640 0.8890 0.8510 0.8710 0.8680

0.7290 0.6911 0.7060 0.9775 0.3980

95%
0.9160 0.9250 0.9230 0.9230 0.9220

0.8686 0.8234 0.8412 1.1650 0.4742

99%
0.9880 0.9770 0.9880 1.0000 0.9670

1.1430 1.0840 1.1070 1.5330 0.6242

AR1

90%
0.8720 0.8880 0.8620 0.8720 0.7930

0.7238 0.6857 0.7010 0.9687 0.3776

95%
0.9060 0.9340 0.9330 0.9240 0.9220

0.8624 0.8170 0.8352 1.1540 0.4499

99%
0.9880 0.9670 0.9880 0.9990 0.9780

1.1350 1.0750 1.0990 1.5190 0.5922

Var Ratio
Indep vs Uniform 1.0130 1.0140 1.0120 1.0160 2.1430

AR1vs Uniform 1.0140 1.0160 1.0140 1.0180 1.1110

1) Empirical coverage of confidence interval 2) Length of confidence interval

4. Concluding remarks

In this article we studied some properties of the estimators of regression parameters in
the GEE approach of Heagerty and Zeger (1996) for clustered ordinal data. We focused
on this alternative since it includes specific models for ordinal data, both for marginal
means and for association between responses. Furthermore, it uses centered variables y∗i −pi
in the estimating equation for α instead of y∗i , as proposed by Williamson et al. (1995),
which results in estimators that are more efficient and invariant to the codification of the
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response in the case of binary data (Heagerty and Zeger, 1996). We studied asymptotic

efficiency of the independence, (Exchangeable, AR1) estimator β̂I , (β̂Ex, β̂AR1) relative to

the exchangeable estimator β̂Ex, when the true association structure is exchangeable. And
we studied asymptotic efficiency of the independence, (Exchangeable, AR1) estimator β̂I ,

(β̂Ex, β̂AR1) relative to the AR1 estimator β̂AR1, when the true association structure is
AR1. When the variance ratio is larger than 1, the true association structure is better
than the fitted association structure. Because in the majority of cases the variance ratio of
the regression estimates of the GEE model is larger than 1, the exchangeable association
structure is recommended. But in the simulation design the case of the repeated time T = 4
was not considered owing to the running time of simulation. And the case of unspecified
working correlation matrix was not considered because it requires so many parameters.
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