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Abstract
The method of generalized estimating equations(GEE) is widely used in the analysis of a correlated dataset

that consists of repeatedly observed responses within subjects. The GEE uses a quasi-likelihood equations to find
the parameter estimates without assuming a specific distribution for the correlated responses. In this paper we
study the importance of specifying the working correlation structure appropriately in fitting GEE for correlated
counts data. We investigate the empirical coverages of confidence intervals for the regression coefficients accord-
ing to four kinds of working correlations where one structure should be specified by the users. The confidence
intervals are computed based on the asymptotic normality and the sandwich variance estimator.

Keywords: Longitudinal counts data, GEE, working correlation structure, sandwich variance esti-
mates.

1. Introduction

In clinical studies one may record the response variable repeatedly within each subject at several
times or under various conditions. Repeated categorical responses commonly occur in biomedical
applications of longitudinal studies. For example, a physician might observe patients conditions at
weekly intervals regarding whether a new treatment is successful. Explanatory variables, usually
called covariate variables, may also vary over time. Sometimes the responses refer to clusters of
subjects. Repeated responses within a cluster tend to be more alike than observations from different
clusters. Each subject may be regarded as a single cluster.

Ordinary analyses that ignore the correlations structure of repeatedly observed responses over
time may be badly inappropriate. The GEE approach utilizes a covariance structure for the repeated
responses without assuming any particular multivariate distribution. The alternative method for treat-
ing the longitudinal categorical responses is to use the generalized linear model(GLM) with random
effects of subjects. The applications of GLM with random effects can be referred to Jeong (2005). The
GEE is a multivariate version of quasi-likelihood that is computationally simpler than the GLM with
random effects. The GEE provides consistent estimates when the model is correct in the sense that
the link function and the linear predictor truly describe the model; however, the GEE is not a likeli-
hood based approach and hence cannot use the methods of likelihood in testing fit, comparing models,
and conducting inference about parameters. Inference on GEE parameters uses Wald statistics based
on the asymptotic normality of the estimators together with their estimated covariance matrix. Firth
(1993), and Kauermann and Caroll (2001) studied the asymptotic properties of standard errors in
small sample sizes or in comparison to parametric estimator, respectively.

It is required to specify a working correlation structure when we fit GEE using common statis-
tical packages; however, the true correlation structure of a given data set is unknown and we have
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no guideline in specifying the working correlation. In this paper we study the effects of working
correlation to the asymptotic properties of GEE estimators based on the simulated counts having the
assumed correlation structures. According to Liang and Zeger (1986) the independence working cor-
relation can have surprisingly good efficiency when the correlation is week to moderate. There are
other correlation structures which are commonly used in practice. The exchangeable correlation, the
autoregressive of lag one(AR1) and the unstructured correlation structure. These correlation struc-
tures will be explained in Section 2.1. All working correlation structures yield similar GEE estimates
and standard errors when the correlations are modest. For the case of clustered ordinal data Nores
and Diez (2008) investigated some properties of GEE according to working correlation structures.
They compared the coverage probability of confidence interval and the efficiency in the sense of vari-
ance estimates. The asymptotic efficiency of a correctly specified exchangeable association structure
relative to the independence was discussed.

Through an empirical study we investigate the importance of specifying the working correlation
appropriately which is close to the true covariance structure of a given dataset. In Chapter 2 we in-
troduce the general framework of GEE in the respect of correlated counts responses by explaining
commonly used working correlation structures. We briefly review the covariance matrix of repeated
Poisson counts and the variance estimator of GEE regression coefficients. Through a practical ex-
ample we illustrate the importance of properly specifying the working correlation in using statistical
packages. Based on a Monte Carlo study we finally provide a suggestive guide in choosing the ap-
propriate working correlation types. We expect the improved efficiency by choosing the working
correlation wisely.

2. Generalized Estimating Equations Method

2.1. Framework of GEE

Let Yi = (Yi1,Yi2, . . . , YiT )′ be a multivariate response consisting of counts Yi j repeatedly observed
over T times for the ith subject, where i = 1, 2, . . . ,N, and T sometimes varies by subject but
we assume that T is fixed for every subject. The quasi-likelihood method assumes a model for
µi j = E(Yi j) and specifies a variance function v(µi j) describing how the variance var(Yi j) depends
on µi j. This method also requires a working guess for the correlation structure among {Yi j}. To incor-
porate the covariate variables in a GEE model we denote the p × 1 vector of explanatory variables by
xi j = (x1i j, x2i j, . . . , xpi j)′ for the observed yi j. The explanatory variables may vary for the repeated
measurements.

We assume that the marginal means of responses are related to the explanatory variables xi j in
terms of link g(·) by the model

ηi j = g(µi j) = x′i j βββ. (2.1)

In GEE we further assume that var(Yi j) = ϕv(µi j) for a known variance function v(µi j) and a common
scale parameter ϕ. The commonly used variance function for the Poisson counts is set by v(µi j) = µi j.
If the scale parameter ϕ is greater than one we doubt overdispersion since var(Yi j) > µi j. In solving
GEE a working correlation matrix R(ρρρ) for Yi has an important role, that depends on a vector ρρρ of
correlation parameters. The working covariance matrix for Yi is given in terms of R(ρρρ) and variance
function v(µi j) as follows

Vi = ϕA
1
2
i R(ρρρ)A

1
2
i , (2.2)
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where Ai = diag(v(µi j)). The working covariance matrix Vi in (2.2) coincides with the covariance
matrix cov(Yi) when R(ρρρ) is the true correlation matrix for Yi.

Let Di = ∂µµµi/∂βββ be a T×p matrix with typical element ∂µi j/∂βk, where µi j = g−1(x′i j βββ). According
to the general discussion by Agresti (2002), the parameter estimators are obtained by solving the GEE
given by

N∑
i

D
′

iV
−1
i

[
Yi − µµµi

]
= 0. (2.3)

The GEE was firstly proposed by Liang and Zeger (1986) for marginal modeling with GLMs. When
R(ρρρ) equals the identity matrix, the GEE treats pairs of responses as independent, and the working
covariance matrix reduced to Vi = ϕAi. In this case the GEE estimator β̂ββ is then the same as the
ordinary estimator for a GLM treating the repeated responses as independent.

Instead of assuming the independence structure it would be more desirable to choose a working
correlation structure permitting dependence between repeated responses. We may treat corr(Yi j,Yik) =
ρ, ρ|k− j| or ρ jk. These types of correlation structures are called the exchangeable correlation, the AR1,
and the unstructured correlation structure, respectively. The unstructured correlation structure seems
to be more flexible and realistic than other correlation types; however, we should be cautious on the
deficiencies due to additional parameters incurred by a separate correlation for each pair.

2.2. Sandwich variance estimator

Thall and Vail (1990) suggested some covariance models for longitudinal counts data with overdis-
persion by considering both the subject effects and the time effects. They derived the variances and
covariances of Yi j and Yik as

σ2
i j = var

(
Yi j

)
= µi j +

(
α0 + α j

)
µ2

i j,

σi jk = cov
(
Yi j,Yik

)
= α0µi jµik,

where α0 is a subject variance scaled by the square of its mean and α j is the variance effect mixed
with both time effects and subject effects. There are several important simplifications and variants
of this formulation, and we refer to Thall and Vail (1990) for detailed discussions. If the covariance
terms are set to be σi jk = ρ jkσi jσik for some suitable forms of σi j and correlation ρ jk, this formulation
coincides with the one proposed by Liang and Zeger (1986); however, allowing time-varying overdis-
persion. This formulation may be more desirable in settings where correlations that vary with ( j, k)
are appropriate. A more parsimonious approach is to take ρi jk = ρ or ρ|k− j| as commented in Section
2.1.

Now we explain the consistent variance estimator of β̂ββ. Let

ΣΣΣN = NΣΣΣ0

 N∑
i

D
′

iV
−1
i cov(Yi)V−1

i Di

ΣΣΣ0, (2.4)

where ΣΣΣ0 = [
∑N

i=1 D′

iV
−1
i Di]−1. A consistent estimator of ΣΣΣN is obtained by a sample analog replacing

µµµi by µ̂µµi and the other unknown parameters βββ, ϕ and ρρρ by their GEE estimates, and the cov(Yi) by
(Yi−µ̂µµi)(Yi−µ̂µµi)

′. This estimator of covariance matrix of β̂ββ is called a sandwich estimator, because the
empirical evidence is sandwiched between the model-driven covariance matrix. The ΣΣΣN/N simplifies
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Table 1: Estimated parameter estimates and their standard errors
Assumed working

α β1 β2 β3 β4 β12 ϕ ρcorrelation
1) −2.3802 0.9497 −1.3481 0.7855 −0.1565 0.5506 4.390

Indep 2) 0.8057 0.0964 0.4553 0.2330 0.0658 0.1847 1.110 -
3) 0.0031 <2e-16 0.0031 0.0008 0.0175 0.0029 -
−2.4017 0.9507 −1.3459 0.7906 −0.1565 0.5514 4.397 0.3642

Exch 0.8183 0.0986 0.4590 0.2359 0.0658 0.1857 1.111 0.0647
0.0033 <2e-16 0.0034 0.0008 0.0175 0.0030 - -
−2.6455 0.9441 −1.5080 0.8714 −0.1498 0.6127 4.460 0.5130

AR1 0.8209 0.0924 0.4470 0.2386 0.0926 0.1807 1.120 0.0636
0.0013 <2e-16 0.0007 0.0003 0.1058 0.0007 - -
−2.5963 0.9383 −1.4983 0.8602 −0.1520 0.6111 4.440

Unstr 0.8379 0.0928 0.4521 0.2421 0.0785 0.1819 1.130 -
0.0020 <2e-16 0.0009 0.0004 0.0529 0.0009 -

1) GEE estimate, 2) Standard Error (S. E.) of GEE estimate, 3) P-value

to ΣΣΣ0 provided that the working correlation structure is the true one and cov(Yi) = Vi. But the true
variance function is unknown in practice.

The asymptotic normality of β̂ββ follows by the GEE theory, for example, of Liang and Zeger (1986).
Under regularity conditions,

√
N(β̂ββ − βββ) converges in distribution to a multivariate normal with mean

0 and covariance matrix ΣΣΣ, where ΣΣΣ = limN→∞ΣΣΣN with ΣΣΣN defined in (2.4). It is known that both
the GEE estimator β̂ββ and its sandwiched covariance estimator are consistent even with incorrect spec-
ification of the variance function. However, some efficiency loss occurs when the chosen variance
function v(µµµi) is badly inaccurate or the number of subjects N is small.

2.3. An example of longitudinal counts data

As an illustration, we present an analysis for the dataset from Thall and Vail (1990), which consist
of 59 epileptic patients suffering from simple or complex partial seizures. At each of four successive
clinical visits, the number of seizures occurring during a 2-week period was recorded. The explanatory
variables appearing in the model are baseline seizure rate (x1), computed as the logarithm of 1/4 the
8-week seizure counts, binary indicator of treatment or placebo (x2), the logarithm of age in years
(x3), and the indicator denoting fourth visit (x4). The sample correlation matrix of four repeated
measurements of seizure counts is

1.0000 0.8708 0.7377 0.8930
0.8708 1.0000 0.8025 0.8945
0.7377 0.8025 1.0000 0.8242
0.8930 0.8945 0.8242 1.0000

 .
We assume the following GLM relationship

log(µi j) = α + β1x1i j + β2x2i j + β3x3i j + β4x4i j + β12x1i j ∗ x2i j.

The pairwise sample correlations seem to be approximately uniform and we may specify the
exchangeable correlation structure in finding GEE estimators. Table 1 shows the results of GEE
fitting obtained from four types of correlation specifications; independence (Indep), exchangeable
(Exch), AR1, and unstructured (Unstr). The GEE estimates, the their sandwich standard errors, and
the corresponding P-values using Wald test are listed for regression coefficients.

The P-values of some regression coefficients, among others those of β2 are very different accord-
ing to working correlation structures. In particular, the independence and the exchange correlation
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represent similar P-values compared to those of AR1 and the unstructured. We see a similar pat-
tern in the estimates of both β3 and β12. We need to be careful in specifying the working correlation
appropriately to approximate the covariance structure of a given dataset.

3. A Monte Carlo Study

3.1. Design of experiment

We consider a relationship given by the log regression model of the form

log(µi j) = α + β1x1i + β2x2i j. (3.1)

The covariate x1i j is taken as −1 for i ≤ 1/4, 0 for 1/4 < i ≤ 3/4, and 1 elsewhere. We generate the
variable x2i j from U(0, 1), the uniform distribution over (0, 1). We note that x2i j is time dependent
but x1i j is not. We take the number of repeated times to be T = 4, and the number of subjects
as N = 60, 120. We let α = 0, and β1 = β2 = 1. The repeated measurements of responses are
generated from the correlated Poisson distribution having the specified correlation structures such as
exchangeable or AR1 correlation matrices. The marginal mean µi j of Poisson counts can be computed
from (3.1). The number of repetitions is set to be 1,000.

The simulation study has been implemented through R software and library functions. We may
refer to R Development Core Team (2006) for the R language and its environment. The library
function rcounts.reg is useful in generating correlated responses having specified correlation structure
and marginal means. Several packages to fit the GEE are available in R but we applied the geeglm
in geepack to fit GEE, which is computationally intensive and can be freely available from CRAN
site (http://cran.r-project.org). For multivariate data, geepack allows covariate in the mean, scale,
and correlation structure by separate link functions that provides sandwich and versions of jackknife
variance estimators for all parameter estimates. For a detailed discussion of geeglm refer to Yan
(2002), and also to Halekoh et al. (2006) for the discussion of geepack. We computed the empirical
coverages of confidence intervals for β1 and β2, and also their average lengths among 1000 iterations.

3.2. Results of simulation study

The empirical coverages of confidence intervals for β1 and β2 are listed in Table 2 and Table 3 accord-
ing to the assumed working correlation structure, the sample sizes, the nominal confidence level, and
the correlation parameter ρ. The empirical coverages do not attain the nominal confidence levels when
N = 60 but it increases to the nominal levels as sample size and ρ increase. When the true correlation
structure is exchangeable with ρ = 0.5, the lengths of confidence intervals under the independence
working correlation are wider than others, and the unstructured correlation has the shortest lengths;
however the coverages for β1 and β2 are unstable under the unstructured correlation.

The results of exchangeable correlation and AR1 are very similar when the true correlation struc-
ture of repeated responses is exchangeable with ρ = 0.7 or 0.9. As we see in Table 2 the lengths of
confidence intervals for the exchangeable correlation structure are shorter than those under AR1 when
the true correlation structure is correctly assumed as exchangeable. On the other hand the empirical
coverages of AR1 are sometimes better than those of exchangeable working correlation specification.
The shorter lengths of confidence intervals under exchangeable working correlation seem to be at-
tained as an expense of slightly lower coverages. The results of Table 3 denote a reversed pattern
when we assume the AR1 as a true correlation structure. This means that the standard errors of GEE
estimators are smaller when we choose the appropriate working correlation structure that approximate
the covariance structure of a given dataset.
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Table 2: Empirical coverages of confidence limits for β1 and β2 among 1000 repetitions when the true
correlation structure is exchangeable with ρ = 0.5, 0.7, 0.9

(a) ρ = 0.5
Assumed Confidence levels
working N 90% 95% 99%

correlation β1 β2 β1 β2 β1 β2

60 1) 0.8750 0.8540 0.9090 0.8990 0.9770 0.9780

Indep 2) 0.1930 0.2415 0.2300 0.2878 0.3028 0.3788

120 0.8870 0.8940 0.9290 0.9330 0.9920 0.9890
0.1334 0.1679 0.1589 0.2001 0.2092 0.2634

60 0.8700 0.8540 0.9120 0.8900 0.9730 0.9640

Exch 0.1912 0.2335 0.2279 0.2782 0.2999 0.3663

120 0.8850 0.8980 0.9360 0.9420 0.9920 0.9850
0.1324 0.1637 0.1578 0.1950 0.2077 0.2567

60 0.8750 0.8490 0.9040 0.8860 0.9730 0.9730

AR1 0.1903 0.2350 0.2267 0.2800 0.2984 0.3686

120 0.8730 0.8870 0.9320 0.9310 0.9880 0.9900
0.1314 0.1639 0.1566 0.1953 0.2061 0.2570

60 0.8960 0.8250 0.9370 0.9070 0.9780 0.9690

Unstr 0.1612 0.2015 0.1921 0.2401 0.2529 0.3160

120 0.8720 0.8800 0.9400 0.9300 0.9810 0.9790
0.1151 0.1438 0.1372 0.1713 0.1805 0.2255

(b) ρ = 0.7
Assumed Confidence levels
working N 90% 95% 99%

correlation β1 β2 β1 β2 β1 β2

60 0.8780 0.8650 0.9290 0.9030 0.9730 0.9690

Indep 0.3081 0.3361 0.3671 0.4005 0.4832 0.5271

120 0.8910 0.8980 0.9590 0.9540 0.9930 0.9870
0.2184 0.2398 0.2603 0.2857 0.3426 0.3760

60 0.8920 0.8730 0.9390 0.9350 0.9680 0.9790

Exch 0.3006 0.2881 0.3581 0.3433 0.4714 0.4519

120 0.9050 0.9030 0.9470 0.9470 0.9930 0.9800
0.2126 0.2030 0.2534 0.2419 0.3335 0.3184

60 0.8940 0.8670 0.9530 0.9150 0.9770 0.9790

AR1 0.3150 0.3158 0.3753 0.3763 0.4941 0.4953

120 0.8990 0.9010 0.9530 0.9330 0.9930 0.9730
0.2235 0.2238 0.2662 0.2666 0.3505 0.3509

60 0.8840 0.8500 0.9250 0.9000 0.9840 0.9640

Unstr 0.2717 0.2515 0.3237 0.2996 0.4261 0.3944

120 0.8750 0.9150 0.9320 0.9610 0.9860 0.9730
0.1927 0.1751 0.2296 0.2087 0.3022 0.2747

(c) ρ = 0.9
Assumed Confidence levels
working N 90% 95% 99%

correlation β1 β2 β1 β2 β1 β2

60 0.8680 0.8620 0.9110 0.9130 0.9850 0.9810

Indep 0.4107 0.4308 0.4894 0.5133 0.6441 0.6756

120 0.9260 0.8550 0.9690 0.9350 0.9940 0.9870
0.2917 0.3069 0.3476 0.3656 0.4575 0.4813

60 0.8630 0.8750 0.9180 0.9160 0.9760 0.9750

Exch 0.3463 0.1551 0.4127 0.1848 0.5432 0.2432

120 0.9360 0.8760 0.9490 0.9360 0.9880 0.9940
0.2450 0.1044 0.2920 0.1244 0.3843 0.1637

60 0.8780 0.8840 0.9250 0.9200 0.9670 0.9820

AR1 0.4172 0.1821 0.4971 0.2169 0.6543 0.2855

120 0.8940 0.8770 0.9550 0.9350 1.0000 0.9820
0.2978 0.1233 0.3548 0.1469 0.4671 0.1934

60 0.7750 0.7891 0.8375 0.8315 0.8799 0.8708

Unstr 1.4660 1.0356 1.7472 1.2340 2.2998 1.6243

120 0.8450 0.8250 0.8900 0.8700 0.9360 0.9420
0.4729 0.2966 0.5635 0.3533 0.7417 0.4651

1) Empirical coverage of confidence interval, 2) Length of confidence interval
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Table 3: Empirical coverages of confidence limits for β1 and β2 among 1000 repetitions when the true
correlation structure is AR1 with ρ = 0.5, 0.7, 0.9

(a) ρ = 0.5
Assumed Confidence levels
working N 90% 95% 99%

correlation β1 β2 β1 β2 β1 β2

60 0.8900 0.8840 0.9320 0.9340 0.9950 0.9900

Indep 0.1626 0.2210 0.1938 0.2634 0.2551 0.3467

120 0.9100 0.9140 0.9300 0.9740 0.9880 0.9940
0.1107 0.1519 0.1318 0.1810 0.1736 0.2382

60 0.8810 0.9090 0.9370 0.9580 0.9800 0.9900

Exch 0.1603 0.2075 0.1910 0.2473 0.2515 0.3255

120 0.8630 0.8780 0.9370 0.9540 0.9810 0.9940
0.1090 0.1412 0.1299 0.1682 0.1710 0.2215

60 0.8750 0.8960 0.9170 0.9290 0.9900 0.9950

AR1 0.1588 0.2204 0.1892 0.2627 0.2490 0.3457

120 0.9180 0.9210 0.9430 0.9810 0.9880 0.9940
0.1081 0.1520 0.1287 0.1811 0.1695 0.2384

60 0.8910 0.9100 0.9320 0.9370 0.9660 0.9810

Unstr 0.1564 0.2406 0.1864 0.2866 0.2453 0.3773

120 0.8890 0.8970 0.9500 0.9360 0.9750 0.9810
0.0893 0.1149 0.1064 0.1369 0.1400 0.1803

(b) ρ = 0.7
Assumed Confidence levels
working N 90% 95% 99%

correlation β1 β2 β1 β2 β1 β2

60 0.8780 0.8460 0.9160 0.9230 0.9710 0.9720

Indep 0.2366 0.2773 0.2819 0.3304 0.3711 0.4350

120 0.8990 0.8830 0.9510 0.9400 0.9880 0.9870
0.1676 0.1966 0.1997 0.2342 0.2628 0.3083

60 0.8780 0.8670 0.9210 0.9140 0.9710 0.9720

Exch 0.2355 0.2703 0.2806 0.3221 0.3693 0.4239

120 0.9180 0.8900 0.9560 0.9470 0.9820 0.9870
0.1668 0.1929 0.1987 0.2298 0.2616 0.3025

60 0.8830 0.8750 0.9160 0.9130 0.9710 0.9760

AR1 0.2303 0.2614 0.2744 0.3115 0.3612 0.4100

120 0.9190 0.9030 0.9560 0.9290 0.9820 0.9930
0.1629 0.1848 0.1941 0.2201 0.2555 0.2898

60 0.8630 0.8630 0.9240 0.8800 0.9730 0.9730

Unstr 0.2190 0.2190 0.2609 0.2983 0.3435 0.3926

120 0.9050 0.8900 0.9500 0.9410 0.9820 0.9870
0.1540 0.1711 0.1835 0.2038 0.2415 0.2683

(c) ρ = 0.9
Assumed Confidence levels
working N 90% 95% 99%

correlation β1 β2 β1 β2 β1 β2

60 0.8610 0.8570 0.9200 0.9210 0.9810 0.9680

Indep 0.3827 0.4017 0.4559 0.4786 0.6002 0.6300

120 0.9250 0.8980 0.9790 0.9360 0.9930 0.9870
0.2717 0.2878 0.3237 0.3429 0.4261 0.4514

60 0.8790 0.8950 0.9450 0.9170 0.9860 0.9590

Exch 0.3507 0.2316 0.4179 0.2760 0.5501 0.3633

120 0.9190 0.8970 0.9790 0.9360 0.9860 0.9930
0.2489 0.1610 0.2965 0.1918 0.3903 0.2525

60 0.8760 0.8850 0.9360 0.9260 0.9900 0.9670

AR1 0.3492 0.2170 0.4161 0.2585 0.5477 0.3403

120 0.9520 0.9010 0.9660 0.9730 0.9930 0.9860
0.2472 0.1486 0.2945 0.1770 0.3877 0.2330

60* 0.8170 0.8580 0.8760 0.9000 0.9080 0.9350

Unstr 2.9010 2.5120 3.4570 2.9930 4.5510 3.9390

120 0.8990 0.9060 0.9450 0.9720 0.9860 0.9930
0.3245 0.1524 0.3866 0.1815 0.5089 0.2390

∗ Unavailable estimates of β1 and β2 in a frequency of 9 cases among 1000 repetitions
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We also comment that the lengths of confidence intervals, and hence the standard errors of β̂k,
k = 1, 2, are smallest under the unstructured correlation structure but the empirical coverages are very
unstable when N = 60. There have been unavailable GEE estimates in a frequency of about nine
cases among 1000 repetitions under the unstructured working correlation under the AR1 with N = 60
and ρ = 0.9. We should be cautious on specifying the unstructured correlation structure because
the performance is not good in many cases with respect to the empirical coverages and the length of
confidence intervals. Furthermore there sometimes occurred no convergence of GEE estimates when
sample size is small to moderate and the correlation parameter ρ is large.

4. Summary and Further Researches

In this study we investigated the effect of working correlation structure to the GEE estimates and their
sandwich standard errors in terms of empirical coverages of confidence interval in GEE of longitudi-
nal counts dataset. Four kinds of correlation structures; the independence, the exchangeable, the AR1
and the unstructured, are available in fitting GEE using the statistical packages such as R and SAS.
We explained the difference in coverages of confidence intervals between four kinds of specifications
when the true correlation structures are assumed as exchangeable or AR1 with several correlation
parameters. From a small scale Monte Carlo study we found that the coverages and the lengths of
confidence intervals depend on the choosing of working correlation structure. The specifications of
exchangeable working correlation and AR1 are good in many cases in the respect of shorter lengths of
confidence intervals but sometimes they have slightly lower coverages compared to the independence
working correlation. The GEE estimates and their standard errors seems to be proper when we cor-
rectly specify the working correlation structure which closely approximate the true correlation matrix
of a given dataset. We need to be careful to the specification of working correlation in fitting GEE.

In particular, we should be cautious on choosing the unstructured correlation structure among
others because the GEE estimates are sometimes unavailable or greatly unstable when the sample size
is small and the correlation parameter is large. As a further work it would be interesting to study the
sensitivity of the correlation structure to the goodness-of-fit of GEE for the analysis of longitudinal
counts data.
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