DOI QR코드

DOI QR Code

Property of regression estimators in GEE models for ordinal responses

  • Lee, Hyun-Yung (Department of Mathematics Education, Silla University)
  • Received : 2011.11.12
  • Accepted : 2011.12.14
  • Published : 2012.01.31

Abstract

The method of generalized estimating equations (GEEs) provides consistent esti- mates of the regression parameters in a marginal regression model for longitudinal data, even when the working correlation model is misspecified (Liang and Zeger, 1986). In this paper we compare the estimators of parameters in GEE approach. We consider two aspects: coverage probabilites and efficiency. We adopted to ordinal responses th results derived from binary outcomes.

Keywords

References

  1. Agresti, A. (2002). Categorical data analysis, 2nd ed., Wiley, New York.
  2. Cho, D. H. (2010). Mixed-effects LS-SVR for longitudinal data. Journal of the Korean Data & Information Science Society, 21, 363-369.
  3. Choi, J. (2008a). A logit model for repeated binary response data. The Korean Journal of Applied Statistics, 21, 291-299. https://doi.org/10.5351/KJAS.2008.21.2.291
  4. Choi, J. (2008b). A marginal logit mixed-effects model for repeated binary response data. Journal of the Korean Data & Information Science Society, 19, 413-420.
  5. Choi, J (2008c). A marginal probability model for repeated polytomous response data. Journal of the Korean Data & Information Science Society, 19, 577-585.
  6. Choi, J. (2010). A mixed model for repeated split-plot data. Journal of the Korean Data & Information Science Society, 21, 1-9.
  7. Diggle, P. J., Heagerty, P. J., Liang, K. Y. and Zeger, S. L. (2002). Analysis of longitudinal data, 2nd ed., Oxford University Press, Oxford.
  8. Heagerty, P. J. and Zeger, S. L. (1996). Marginal regression models for clustered ordinal measurements. Journal of the American Statistical Association, 91, 1024-1036. https://doi.org/10.1080/01621459.1996.10476973
  9. Liang, K. Y. and Zeger, S. L. (1986). Longitudinal data analysis using generalized linear models. Biometrika, 73, 13-22. https://doi.org/10.1093/biomet/73.1.13
  10. Lipsitz, S. R., Laird, N. M. and Harrington, D. P. (1991). Generalized estimating equations for correlated binary data: Using the odds ratio as a measure of association. Biometrika, 78, 153-60. https://doi.org/10.1093/biomet/78.1.153
  11. Mancl, L. A. and Leroux, B. G. (1996). Efficiency of regression estimates for clusterd data. Biometrics, 52, 500-511. https://doi.org/10.2307/2532890
  12. Nores, M. L. and Diez, M. P. (2008). Some properties of regression estimators in GEE models for clustered ordinal data. Computational Statistics & Data Analysis, 52, 3877-3888. https://doi.org/10.1016/j.csda.2007.12.009
  13. R Development Team (2006). R: A language and environment for statistical computing, R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL:http://www.r-project.org.
  14. Singer, J. M. and Andrade, D. F. (1986). Analise de dados longitudinais. Associacao Brasileira de Estatistica, Sao Paulo, 106.
  15. Yan, J. and Fine, J. (2004). Estimating equations for association structures. Statistic in Medicine, 23, 859-874. https://doi.org/10.1002/sim.1650
  16. Ziegler, A., Kastner, C. and Blettner, M. (1998). The generalised estimating equations: An annotated bibliography. Biometrical Journal, 40, 115-139. https://doi.org/10.1002/(SICI)1521-4036(199806)40:2<115::AID-BIMJ115>3.0.CO;2-6

Cited by

  1. Goodness-of-fit tests for a proportional odds model vol.24, pp.6, 2013, https://doi.org/10.7465/jkdi.2013.24.6.1465
  2. Contemporary review on the bifurcating autoregressive models : Overview and perspectives vol.25, pp.5, 2014, https://doi.org/10.7465/jkdi.2014.25.5.1137