References
- Breslow, N. E. and Clayton, D. G. (1993). Approximate inference in generalized linear mixed models, Journal of the American Statistical Association, 88, 9-25 https://doi.org/10.2307/2290687
- Carroll, R. J. and Ruppert, D. (1988). Transformation and Weighting in Regression, Chapman & Hall/CRC, London, p.270
- Carroll, R. J., Ruppert, D. and Stefanski, L. A. (1995). Measurement Error in Nonlinear Models, Chapman & Hall/CRC, London
- Crowder, M. (1985). Gaussian estimation for correlated binomial data, Journal of the Royal Statistical Society, Series A, 47, 229-237
- Crowder, M. (1995). On the use of a working correlation matrix in using generalised linear models for repeated measures, Biometrika, 82, 407-410 https://doi.org/10.1093/biomet/82.2.407
- Davidian, M. and Giltinan, D. M. (1995). Nonlinear Models for Repeated Measurement Data, Chapman & Hall/CRC, London, p.164
- Davis, P. M. and Pedigo, L. P. (1989). Analysis of spatial patterns and sequential count plans for stalk, Environmental Entomology, 18, 504-509 https://doi.org/10.1093/ee/18.3.504
- Fitzmaurice, G. M. (1995). A caveat concerning independence estimating equations with multivariate binary data, Biometrics, 51, 309-317 https://doi.org/10.2307/2533336
- Liang, K. Y. and Zeger, S. L. (1986). Longitudinal data analysis using generalized linear models, Biometrika, 73, 13-22 https://doi.org/10.1093/biomet/73.1.13
- Liang, K. Y., Zeger, S. L. and Qaqish, B. (1992). Multivariate regression analyses for categorical data, Journal of the Royal Statistical Society, Series B, 54, 3-40
- Littell, R. C., Milliken, G. A., Stroup, W. W. and Wolfinger, R. (1996). SAS SYSTEM for Mixed Models, SAS Institute. Inc., Cary, NC, USA
- Madsen, L. and Dalthorp, D. (2007). Generating correlated count data, Environmental and Ecological Statistics, 14, 129-148 https://doi.org/10.1007/s10651-007-0008-1
- Mancl, L. A. and Leroux, B. G. (1996). Efficiency of regression estimates for clustered data, Biometrics, 52, 500-511 https://doi.org/10.2307/2532890
- Park, H. and Cho, K. (2004). Use of covariates in Taylor's power law for sequential sampling in pest management, Journal of Agricultural, Biological and Environmental Statistics, 9, 462-478 https://doi.org/10.1198/108571104X15746
- Pepe, M. S. and Anderson, G. L. (1994). A cautionary note on inference for marginal regression models with longitudinal data and general correlated response data, Communications in Statistics - Simulation and Computation, 23, 939-951 https://doi.org/10.1080/03610919408813210
- Perry, J. N. (1981). Taylor's power law for dependence of variance on mean in animal population, Applied Statistics, 30, 254-263 https://doi.org/10.2307/2346349
- Southwood, T. R. E. (1978). Ecological Methods (2nd Ed.), Chapman & Hall/CRC, London, p.391
- Sutradhar, B. C. and Das, K. (1999). On the efficiency of regression estimators in generalised linear models for longitudinal data, Biometrika, 86, 459-465 https://doi.org/10.1093/biomet/86.2.459
- Taylor, L. R. (1961). Aggregation, variance and the mean, Nature, 189, 732-735 https://doi.org/10.1038/189732a0
- Thall, P. F. and Vail, S. C. (1990). Random effects models for serial observations with overdispersion, Biometrics, 40, 961-971 https://doi.org/10.2307/2531147
- Wang, Y. G. and Carey, V. (2003). Working correlation structure misspecification, estimation and covariate design: Implications for generalised estimating equations performance, Biometrika, 90, 29-41 https://doi.org/10.1093/biomet/90.1.29
- Wang, Y. G. and Carey, V. (2004). Unbiased estimating equations from working correlation models for irregularly timed repeated measures, Journal of the American Statistical Association, 99, 845-853 https://doi.org/10.1198/016214504000001178
- Wedderburn, R. W. M. (1974). Quasi-likelihood functions, generalized linear models, and the Gauss-Newton method, Biometrika, 61, 439-447
- Whittle, P. (1961). Gaussian estimation in stationary time series, Bulletin of the International Statistical Institute, 39, 1-26