• 제목/요약/키워드: General boundary conditions

검색결과 304건 처리시간 0.024초

Three phase flow simulations using the fractional flow based approach with general initial and boundary conditions

  • Suk, Heejun
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2004년도 총회 및 춘계학술발표회
    • /
    • pp.88-91
    • /
    • 2004
  • The multiphase flow simulator, MPS, is developed based on the fractional flow approach considering tile fully three phase flow with general initial and boundary condition. Most existing fractional flow-based models are limited to two-phase flow and specific boundary conditions. Although there appears a number of three-phase flow models, they were mostly developed using pressure based approaches. As a result, these models require cumbersome variable-switch techniques to deal with phase appearance and disappearance. The use of fractional flow based approach in MPS makes it unnecessary to use variable-switch to handle the change of phase configurations. Also most existing fractional flow based models consider only specific boundary conditions. However, the present model considers general boundary conditions of most possible and plausible cases which consists of ten cases.

  • PDF

A coupled Ritz-finite element method for free vibration of rectangular thin and thick plates with general boundary conditions

  • Eftekhari, Seyyed A.
    • Steel and Composite Structures
    • /
    • 제28권6호
    • /
    • pp.655-670
    • /
    • 2018
  • A coupled method, that combines the Ritz method and the finite element (FE) method, is proposed to solve the vibration problem of rectangular thin and thick plates with general boundary conditions. The eigenvalue partial differential equation(s) of the plate is (are) first reduced to a set of eigenvalue ordinary differential equations by the application of the Ritz method. The resulting eigenvalue differential equations are then reduced to an eigenvalue algebraic equation system using the finite element method. The natural boundary conditions of the plate problem including the free edge and free corner boundary conditions are also implemented in a simple and accurate manner. Various boundary conditions including simply supported, clamped and free boundary conditions are considered. Comparisons with existing numerical and analytical solutions show that the proposed mixed method can produce highly accurate results for the problems considered using a small number of Ritz terms and finite elements. The proposed mixed Ritz-FE formulation is also compared with the mixed FE-Ritz formulation which has been recently proposed by the present author and his co-author. It is found that the proposed mixed Ritz-FE formulation is more efficient than the mixed FE-Ritz formulation for free vibration analysis of rectangular plates with Levy-type boundary conditions.

FRACTIONAL DIFFERENTIAL EQUATIONS WITH NONLOCAL BOUNDARY CONDITIONS

  • Soenjaya, Agus L.
    • 대한수학회논문집
    • /
    • 제37권2호
    • /
    • pp.497-502
    • /
    • 2022
  • Existence and uniqueness for fractional differential equations satisfying a general nonlocal initial or boundary condition are proven by means of Schauder's fixed point theorem. The nonlocal condition is given as an integral with respect to a signed measure, and includes the standard initial value condition and multi-point boundary value condition.

A Class of Singular Quadratic Control Problem With Nonstandard Boundary Conditions

  • Lee, Sung J.
    • 호남수학학술지
    • /
    • 제8권1호
    • /
    • pp.21-49
    • /
    • 1986
  • A class of singular quadratic control problem is considered. The state is governed by a higher order system of ordinary linear differential equations and very general nonstandard boundary conditions. These conditions in many important cases reduce to standard boundary conditions and because of the conditions the usual controllability condition is not needed. In the special case where the coefficient matrix of the control variable in the cost functional is a time-independent singular matrix, the corresponding optimal control law as well as the optimal controller are computed. The method of investigation is based on the theory of least-squares solutions of multi-valued operator equations.

  • PDF

Consistent inflow boundary conditions for modelling the neutral equilibrium atmospheric boundary layer for the SST k-ω model

  • Yang, Yi;Xie, Zhuangning;Gu, Ming
    • Wind and Structures
    • /
    • 제24권5호
    • /
    • pp.465-480
    • /
    • 2017
  • Modelling an equilibrium atmospheric boundary layer (ABL) in computational wind engineering (CWE) and relevant areas requires the boundary conditions, the turbulence model and associated constants to be consistent with each other. Among them, the inflow boundary conditions play an important role and determine whether the equations of the turbulence model are satisfied in the whole domain. In this paper, the idea of modeling an equilibrium ABL through specifying proper inflow boundary conditions is extended to the SST $k-{\omega}$ model, which is regarded as a better RANS model for simulating the blunt body flow than the standard $k-{\varepsilon}$ model. Two new sets of inflow boundary conditions corresponding to different descriptions of the inflow velocity profiles, the logarithmic law and the power law respectively, are then theoretically proposed and numerically verified. A method of determining the undetermined constants and a set of parameter system are then given, which are suitable for the standard wind terrains defined in the wind load code. Finally, the full inflow boundary condition equations considering the scale effect are presented for the purpose of general use.

FINITE DIFFERENCE METHOD FOR THE TWO-DIMENSIONAL BLACK-SCHOLES EQUATION WITH A HYBRID BOUNDARY CONDITION

  • HEO, YOUNGJIN;HAN, HYUNSOO;JANG, HANBYEOL;CHOI, YONGHO;KIM, JUNSEOK
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제23권1호
    • /
    • pp.19-30
    • /
    • 2019
  • In this paper, we develop an accurate explicit finite difference method for the two-dimensional Black-Scholes equation with a hybrid boundary condition. In general, the correlation term in multi-asset options is problematic in numerical treatments partially due to cross derivatives and numerical boundary conditions at the far field domain corners. In the proposed hybrid boundary condition, we use a linear boundary condition at the boundaries where at least one asset is zero. After updating the numerical solution by one time step, we reduce the computational domain so that we do not need boundary conditions. To demonstrate the accuracy and efficiency of the proposed algorithm, we calculate option prices and their Greeks for the two-asset European call and cash-or-nothing options. Computational results show that the proposed method is accurate and is very useful for nonlinear boundary conditions.

Shear deformation effect in flexural-torsional buckling analysis of beams of arbitrary cross section by BEM

  • Sapountzakis, E.J.;Dourakopoulos, J.A.
    • Structural Engineering and Mechanics
    • /
    • 제35권2호
    • /
    • pp.141-173
    • /
    • 2010
  • In this paper a boundary element method is developed for the general flexural-torsional buckling analysis of Timoshenko beams of arbitrarily shaped cross section. The beam is subjected to a compressive centrally applied concentrated axial load together with arbitrarily axial, transverse and torsional distributed loading, while its edges are restrained by the most general linear boundary conditions. The resulting boundary value problem, described by three coupled ordinary differential equations, is solved employing a boundary integral equation approach. All basic equations are formulated with respect to the principal shear axes coordinate system, which does not coincide with the principal bending one in a nonsymmetric cross section. To account for shear deformations, the concept of shear deformation coefficients is used. Six coupled boundary value problems are formulated with respect to the transverse displacements, to the angle of twist, to the primary warping function and to two stress functions and solved using the Analog Equation Method, a BEM based method. Several beams are analysed to illustrate the method and demonstrate its efficiency and wherever possible its accuracy. The range of applicability of the thin-walled theory and the significant influence of the boundary conditions and the shear deformation effect on the buckling load are investigated through examples with great practical interest.

NUMERICAL INTEGRATION METHOD FOR SINGULAR PERTURBATION PROBLEMS WITH MIXED BOUNDARY CONDITIONS

  • Andargie, Awoke;Reddy, Y.N.
    • Journal of applied mathematics & informatics
    • /
    • 제26권5_6호
    • /
    • pp.1273-1287
    • /
    • 2008
  • In this paper, the numerical integration method for general singularly perturbed two point boundary value problems with mixed boundary conditions of both left and right end boundary layer is presented. The original second order differential equation is replaced by an approximate first order differential equation with a small deviating argument. By using the trapezoidal formula we obtain a three term recurrence relation, which is solved using Thomas Algorithm. To demonstrate the applicability of the method, we have solved four linear (two left and two right end boundary layer) and one nonlinear problems. From the results, it is observed that the present method approximates the exact or the asymptotic expansion solution very well.

  • PDF

SPECTRAL ANALYSIS FOR THE CLASS OF INTEGRAL OPERATORS ARISING FROM WELL-POSED BOUNDARY VALUE PROBLEMS OF FINITE BEAM DEFLECTION ON ELASTIC FOUNDATION: CHARACTERISTIC EQUATION

  • Choi, Sung Woo
    • 대한수학회보
    • /
    • 제58권1호
    • /
    • pp.71-111
    • /
    • 2021
  • We consider the boundary value problem for the deflection of a finite beam on an elastic foundation subject to vertical loading. We construct a one-to-one correspondence �� from the set of equivalent well-posed two-point boundary conditions to gl(4, ℂ). Using ��, we derive eigenconditions for the integral operator ��M for each well-posed two-point boundary condition represented by M ∈ gl(4, 8, ℂ). Special features of our eigenconditions include; (1) they isolate the effect of the boundary condition M on Spec ��M, (2) they connect Spec ��M to Spec ����,α,k whose structure has been well understood. Using our eigenconditions, we show that, for each nonzero real λ ∉ Spec ����,α,k, there exists a real well-posed boundary condition M such that λ ∈ Spec ��M. This in particular shows that the integral operators ��M, arising from well-posed boundary conditions, may not be positive nor contractive in general, as opposed to ����,α,k.