1 |
R. Triggiani, Wave equation on a bounded domain with boundary dissipation: An operator approach, J. Math. Anal. Appl. 137 (1989), no. 2, 438-461.
|
2 |
S. A. Messaoudi and A. Soufyane, General decay of solutions of a wave equation with a boundary control of memory type, Nonlinear Anal. R.W.A. 11 (2010), no. 4, 2896-2904.
DOI
ScienceOn
|
3 |
J. Y. Park and S. H. Park, On solutions for a hyperbolic system with differential inclusion and memory source term on the boundary, Nonlinear Anal. 57 (2004), no. 3, 459-472.
DOI
ScienceOn
|
4 |
S. H. Park, J. Y. Park, and J. M. Jeong, Boundary stabilization of hyperbolic hemivariational inequalities, Acta Appl. Math. 104 (2008), no. 2, 139-150.
DOI
|
5 |
E. Zuazua, Uniform stabilization of the wave equation by nonlinear boundary feedback, SIAM J. Control Optim. 28 (1990), no. 2, 466-477.
DOI
|
6 |
S. A. Messaoudi, General decay of solutions of a viscoelastic equation, J. Math. Anal. Appl. 341 (2008), no. 2, 1457-1467.
DOI
ScienceOn
|
7 |
M. M. Cavalcanti and A. Guesmia, General decay rates of solutions to a nonlinear wave equation with boundary conditions of memory type, Differential Integral Equations 18 (2005), no. 5, 583-600.
|
8 |
M. Aassila, M. M. Cavalcanti, and J. A. Soriano, Asymptotic stability and energy decay rates for solutions of the wave equation with memory in a star-shaped domain, SIAM J. Control Optim. 38 (2000), no. 5, 1581-1602.
DOI
ScienceOn
|
9 |
F. Alabau-Boussouira, Convexity and weighted integral inequalities for energy decay rates of nonlinear dissipative hyperbolic systems, Appl. Math. Optim. 51 (2005), no. 1, 61-105.
DOI
|
10 |
M. M. Cavalcanti, V. N. Domingos Cavalcanti, and P. Martinez, General decay rate estimates for viscoelastic dissipative systems, Nonlinear Anal. 68 (2008), no. 1, 177-193.
DOI
ScienceOn
|
11 |
A. Guesmia and S. A. Messaoudi, General energy decay estimates of Timoshenko systems with frictional versus viscoelastic damping, Math. Methods Appl. Sci. 32 (2009), no. 16, 2102-2122.
DOI
ScienceOn
|
12 |
V. Komornik, Exact Controllability and Stabilization: The Multiplier Method, John Wiley and Sons, Masson, 1994.
|
13 |
V. Komornik and E. Zuazua, A direct method for the boundary stabilization of the wave equation, J. Math. Pures Appl. (9) 69 (1990), no. 1, 33-54.
|
14 |
I. Lasiecka and D. Tataru, Uniform boundary stabilization of semilinear wave equations with nonlinear boundary damping, Differential Integral Equations 6 (1993), no. 3, 507-533.
|
15 |
P. Martinez, A new method to obtain decay rate estimates for dissipative systems, ESAIM Control Optim. Calc. Var. 4 (1999), 419-444.
DOI
|
16 |
A. Guesmia, A new approach of stabilization of nondissipative distributed systems, SIAM J. Control Optim. 42 (2003), no. 1, 24-52.
DOI
ScienceOn
|