• Title/Summary/Keyword: General Conditions of the Construction

Search Result 278, Processing Time 0.028 seconds

Flood Routing Using Numerical Analysis Model (수치해석모형에 의한 홍수추적)

  • 이용직;권순국
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.31 no.1
    • /
    • pp.117-130
    • /
    • 1989
  • In this study, an implicit one-dimensional model, DWRM(Dynamic Wave Routing Model) was developed by using the four-point weighted difference method. By applying the developed model to the Keum River, the parameters were calibrated and the model applicability was tested through the comparison between observed and computed water levels. In addition, the effects of the construction of an estuary dam to the flood wave were estimated as a result of the model application. The results of the study can be summarized as follows; 1. The roughness coefficients were evaluated by comparison between observed and computed water level at Jindu, Gyuam and Ganggyeung station in 1985. The Root Mean Squares for water level differences between observed and computed values were 0.10, 0.11, 0. 29m and the differences of peak flood levels were 0.07, 0.02, 0. 07m at each station. Since the evaluated roughness coefficients were within the range of 0.029-0.041 showing the realistic value for the general condition of rivers, it can be concluded that the calibration has been completed. 2. By the application of model using the calibrated roughness coefficients, the R. M. S. for water level differences were 0.16, 0.24, 0. 24m and the differences of peak flood level were 0.17, 0.13,0.08 m at each station. The arrival time of peak flood at each station and the stage-discharge relationship at Gongju station agreed well with the observed values. Therefore, it was concluded that the model could be applied to the Keum River. 3. The model was applied under conditions before and after the construction of the estuary dam. The 50-year frequency flood which had 7, 800m$^3$/sec of peak flood was used as the upstream condition, and the spring tide and the neap tide were used as the downstream condition. As the results of the application, no change of the peak flood level was showed in the upper reaches of 19.2km upstream from the estuary dam. For areas near 9.6km upstream from the estuary dam, the change of the peak flood level under the condition before and after the construction was 0. 2m. However considering the assumptions for the boundary conditions of downstream, the change of peak flood level would be decreased.

  • PDF

A Study on Prediction of Earth Retaining Work Cost in the Project Planning Stage -Focusing on Apartment Construction Projects in Seoul- (사업기획단계에서 흙막이 공사비 예측에 관한 연구 -서울시내 아파트 건설사업을 중심으로-)

  • Lee, Jin-Kyu;Yang, Kyung-Jin;Park, Ki-Hyeon;Kim, Chan-kee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.1
    • /
    • pp.385-392
    • /
    • 2021
  • In general, earth retaining work in construction works enables the construction of structures, prevents the displacement of the surrounding ground to the maximum extent, and plays an important role in ensuring the safety of the surrounding structures and field workers. The earth retaining work and the construction method differ according to the various ground characteristics, surrounding topographical characteristics, repair environment, and design conditions. In particular, in the case of Seoul city, the environments and ground conditions differ according to the area. This study analyzed the earth retaining work cost mainly for the apartment construction project in Seoul and calculated the approximate earth retaining work cost at the project planning stage. A model was developed to predict the cost of earth retaining work that matches the characteristics of Seoul City and predict the construction cost for earth retaining work. This paper presents the predicted earth retaining work cost using a multiple regression model that applies 10 project outlines as independent variables. The error rate of the prediction result of the earth retaining work cost of the apartment construction project in Seoul using multiple regression models was 10.75%.

A Study on Construction Condition of Modular System by Structural Analysis of Construction Stage (시공단계 구조해석을 통한 적층형 모듈러주택의 시공조건 검토)

  • Jo, Min-Joo;Kim, Jong-Sung;Yu, Seong-Yong;Choi, Ki-Bong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.2
    • /
    • pp.143-150
    • /
    • 2015
  • At present, the actual condition is that Korean modular structures are limited to a low rise detached house and military barracks. And there is no standardized structural design method of stacked modular structure. Accordingly, in general, they don't review impact force in the stage of stacking and installing a module, the effect which wind load has on a structure in the stage of lifting, and inertial force occurring in the stage of lifting or transporting a module in the process of constructing a structure. Therefore, this study investigated the construction method of modular system to be studied in stages, and decided on the position to which load was applied and boundary condition in structural analysis at each construction stage. Besides, inertial force according to each speed was calculated in the lifting and wheeled transport of module. And we calculated impact load according to lifting speed in module stacking and installation work and wind load due to instantaneous wind speed in the installation work by lifting. On the basis of the suggested method, in the modular system to be studied, it carried out review of structure by changing determining conditions of load being applied by construction stage, such as in the stage of lifting, in the stage of transport, and in the stage of installation, and drew construction conditions securing stability structurally.

AUTOMATIC DATA COLLECTION TO IMPROVE READY-MIXED CONCRETE DELIVERY PERFORMANCE

  • Pan Hao;Sangwon Han
    • International conference on construction engineering and project management
    • /
    • 2011.02a
    • /
    • pp.187-194
    • /
    • 2011
  • Optimizing truck dispatching-intervals is imperative in ready mixed concrete (RMC) delivery process. Intervals shorter than optimal may induce queuing of idle trucks at a construction site, resulting in a long delivery cycle time. On the other hand, intervals longer than optimal can trigger work discontinuity due to a lack of available trucks where required. Therefore, the RMC delivery process should be systematically scheduled in order to minimize the occurrence of waiting trucks as well as guarantee work continuity. However, it is challenging to find optimal intervals, particularly in urban areas, due to variations in both traffic conditions and concrete placement rates at the site. Truck dispatching intervals are usually determined based on the concrete plant managers' intuitive judgments, without sufficient and reliable information regarding traffic and site conditions. Accordingly, the RMC delivery process often experiences inefficiency and/or work discontinuity. Automatic data collection (ADC) techniques (e.g., RFID or GPS) can be effective tools to assist plant managers in finding optimal dispatching intervals, thereby enhancing delivery performance. However, quantitative evidence of the extent of performance improvement has rarely been reported to data, and this is a central reason for a general reluctance within the industry to embrace these techniques, despite their potential benefits. To address this issue, this research reports on the development of a discrete event simulation model and its application to a large-scale building project in Abu Dhabi. The simulation results indicate that ADC techniques can reduce the truck idle time at site by 57% and also enhance the pouring continuity in the RMC delivery process.

  • PDF

Numerical Study for Tunnel Shotcrete Lining Operated Stress Measurement Techique Development During a Construction (시공중 터널 숏크리트 라이닝 작용응력 측정기법 개발을 위한 수치해석적 연구)

  • Shin, Hyu-Seong;Kim, Dong-Gyou;Jung, Yong-Su;Hwang, Jae-Hong;Bae, Gyu-Jin
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.754-761
    • /
    • 2008
  • In general, stress measurement of existent shotcrete lining be used by pressure cells. but, measuring instrument is lost by high pressure at shotcrete lining construction and pressure cell's measurement value have to low believability by natural conditions like curing temperature. In this study, proposed techniques to measure without utilizing sensitive stress sensor in natural condition at point that want stress of shotcrete lining after shotcrete lining construction. Executed numerical analysis to forecast stress level that interact in tunnel shotcrete lining, measured strain of hole by load action through hole in shotcrete lining. 3D FEM(finite element method) is enforced through various parameters curing time of shotcrete lining, thickness, load condition. Different model cases applied by parametic study. As analysis result, it could grasp development possibility of method that propose this time because it could examine corelation with strain by near hole of shotcrete lining and stress about load condition.

  • PDF

Development of Building Construction Curriculum that Applies Team-Based Learning (팀기반학습을 적용한 건축시공학 교육과정 개발)

  • Kim, jae-Yeob;Lee, Ung-Kyun;Jo, Min-Jin
    • Journal of the Korea Institute of Building Construction
    • /
    • v.21 no.5
    • /
    • pp.421-432
    • /
    • 2021
  • Recently, there has been a growing interest among domestic universities in effective teaching methods to improve learning effects. In addition, a shift from an instructor-centered teaching method to a student-centered teaching method has been pursued, in a bid to enhance student learning competencies in educational settings. The purpose of this study is to develop a building construction curriculum that applies team-based learning, which is an approach towards student-centered learning. The major research findings are as follows. A building construction curriculum that applies team-based learning was developed based on an analysis of the operational status of lectures and team-based learning courses among universities in Korea. Learning procedures, the weekly curriculum and curriculum operation plans were also developed for the team-based learning course. The curriculum presented in this study is a general curriculum that can be applied to domestic universities. As such, it is expected that individual universities can adjust and apply the curriculum according to the educational conditions and characteristics of both instructors and students.

A Study on Actual Condition of Topsoil Management at Forest Development Projects (산지개발사업에서 표토관리 실태에 관한 연구)

  • Kim, Won Tae;Cho, Yong Hyeon;Lee, Jong Mun;Yoon, Yong Han;Kang, Hee Kyoung;Park, Bong Ju;Yoon, Taek Seong;Jang, Kwang Eun;Shin, Kyung Jun;Eo, Yang Joon;Kwak, Moo Young;Song, Hong Seon
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.17 no.1
    • /
    • pp.13-25
    • /
    • 2014
  • The study aims to investigate and analyze actual situations of managing topsoil at forest development sites based on their types, in pursuit of conservation and effective use of national land. To do this, I selected target areas by deducting the typical types of forest development and analyzed the condition of soil at the target areas before and after development. In addition to this, I interviewed associated construction staffs to conduct study on present situations of topsoil management and find out its problems. I also surveyed of relevant experts, with the intention of seeking solutions. The results of the study have been shown that firstly, experts preferred collecting and recycling of topsoil as methods of improvement of soil conditions for plant growth. Secondly, the importance of topsoil has been well noticed and there were few construction sites using the methods. However, working and economical problems have disturbed carrying out these solutions. Thirdly, after constructions, organic matter and total-nitrogen content decreased in general which were necessary for plant growth in terms of soil conditions.

Curved beam through matrices associated with support conditions

  • Gimena, Faustino N.;Gonzaga, Pedro;Valdenebro, Jose V.;Goni, Mikel;Reyes-Rubiano, Lorena S.
    • Structural Engineering and Mechanics
    • /
    • v.76 no.3
    • /
    • pp.395-412
    • /
    • 2020
  • In this article, the values of internal force and deformation of a curved beam under any action with the firm or elastic supports are determined by using structural matrices. The article presents the general differential formulation of a curved beam in global coordinates, which is solved in an orderly manner using simple integrals, thus obtaining the transfer matrix expression. The matrix expression of rigidity is obtained through reordering operations on the transfer notation. The support conditions, firm or elastic, provide twelve equations. The objective of this article is the construction of the algebraic system of order twenty-four, twelve transfer equations and twelve support equations, which relates the values of internal force and deformation associated with the two ends of the directrix of the curved beam. This final algebraic system, expressed in matrix form, is divided into two subsystems: twelve algebraic equations of internal force and twelve algebraic equations of deformation. The internal force and deformation values for any point in the curved beam directrix are determined from these values in the initial position. The five examples presented show how to apply the matrix procedures developed in this article, whether they are curved beams with the firm or elastic support.

Application of FEM on first ply failure of composite hypar shells with various edge conditions

  • Ghosh, Arghya;Chakravorty, Dipankar
    • Steel and Composite Structures
    • /
    • v.32 no.4
    • /
    • pp.423-441
    • /
    • 2019
  • This study aims to accurately predict the first ply failure loads of laminated composite hypar shell roofs with different boundary conditions. The geometrically nonlinear finite element method (FEM) is used to analyse different symmetric and anti-symmetric, cross and angle ply shells. The first ply failure loads are obtained through different well-established failure criteria including Puck's criterion along with the serviceability criterion of deflection. The close agreement of the published and present results for different validation problems proves the correctness of the finite element model used in the present study. The effects of edge conditions on first ply failure behavior are discussed critically from practical engineering point of view. Factor of safety values and failure zones are also reported to suggest design and non-destructive monitoring guidelines to practicing engineers. Apart from these, the present study indicates the rank wise relative performances of different shell options. The study establishes that the angle ply laminates in general perform better than the cross ply ones. Among the stacking sequences considered here, three layered symmetric angle ply laminates offer the highest first ply failure load. The probable failure zones on the different shell surfaces, identified in this paper, are the areas where non-destructive health monitoring may be restricted to. The contributions made through this paper are expected to serve as important design aids to engineers engaged in composite hypar shell design and construction.

SYSTEM OF GENERALIZED MULTI-VALUED RESOLVENT EQUATIONS: ALGORITHMIC AND ANALYTICAL APPROACH

  • Javad Balooee;Shih-sen Chang;Jinfang Tang
    • Bulletin of the Korean Mathematical Society
    • /
    • v.60 no.3
    • /
    • pp.785-827
    • /
    • 2023
  • In this paper, under some new appropriate conditions imposed on the parameter and mappings involved in the resolvent operator associated with a P-accretive mapping, its Lipschitz continuity is proved and an estimate of its Lipschitz constant is computed. This paper is also concerned with the construction of a new iterative algorithm using the resolvent operator technique and Nadler's technique for solving a new system of generalized multi-valued resolvent equations in a Banach space setting. The convergence analysis of the sequences generated by our proposed iterative algorithm under some appropriate conditions is studied. The final section deals with the investigation and analysis of the notion of H(·, ·)-co-accretive mapping which has been recently introduced and studied in the literature. We verify that under the conditions considered in the literature, every H(·, ·)-co-accretive mapping is actually P-accretive and is not a new one. In the meanwhile, some important comments on H(·, ·)-co-accretive mappings and the results related to them appeared in the literature are pointed out.