DOI QR코드

DOI QR Code

SYSTEM OF GENERALIZED MULTI-VALUED RESOLVENT EQUATIONS: ALGORITHMIC AND ANALYTICAL APPROACH

  • Javad Balooee (School of Mathematics Statistics and Computer Science College of Science University of Tehran) ;
  • Shih-sen Chang (Center for General Education China Medical University) ;
  • Jinfang Tang (Department of mathematics Yibin University)
  • Received : 2022.05.30
  • Accepted : 2022.11.10
  • Published : 2023.05.31

Abstract

In this paper, under some new appropriate conditions imposed on the parameter and mappings involved in the resolvent operator associated with a P-accretive mapping, its Lipschitz continuity is proved and an estimate of its Lipschitz constant is computed. This paper is also concerned with the construction of a new iterative algorithm using the resolvent operator technique and Nadler's technique for solving a new system of generalized multi-valued resolvent equations in a Banach space setting. The convergence analysis of the sequences generated by our proposed iterative algorithm under some appropriate conditions is studied. The final section deals with the investigation and analysis of the notion of H(·, ·)-co-accretive mapping which has been recently introduced and studied in the literature. We verify that under the conditions considered in the literature, every H(·, ·)-co-accretive mapping is actually P-accretive and is not a new one. In the meanwhile, some important comments on H(·, ·)-co-accretive mappings and the results related to them appeared in the literature are pointed out.

Keywords

Acknowledgement

The authors thank the editor and anonymous reviewers for their valuable comments and suggestions which have improved the final version of the manuscript.

References

  1. R. Ahmad and M. Akram, A system of generalized resolvent equations involving generalized pseudocontractive mapping, Iran. J. Sci. Technol. Trans. A Sci. 37 (2013), no. 3, Special issue: Mathematics, 431-438.
  2. R. Ahmad and Q. H. Ansari, An iterative algorithm for generalized nonlinear variational inclusions, Appl. Math. Lett. 13 (2000), no. 5, 23-26. https://doi.org/10.1016/S0893-9659(00)00028-8
  3. R. Ahmad, M. Dilshad, M. Wong, and J. Yao, H(., .)-cocoercive operator and an application for solving generalized variational inclusions, Abstr. Appl. Anal. 2011 (2011), Art. ID 261534, 12 pp. https://doi.org/10.1155/2011/261534
  4. R. Ahmad, B. S. Lee, and Mohd. Akram, H(., .)-co-accretive mapping with an application for solving a system of variational inclusions, Thai J. Math. 11 (2013), no. 2, 411-427.
  5. R. Ahmad and J. C. Yao, System of generalized resolvent equations with corresponding system of variational inclusions, J. Global Optim. 44 (2009), no. 2, 297-309. https://doi.org/10.1007/s10898-008-9327-5
  6. P. K. Anh, D. V. Thong, and V. T. Dung, A strongly convergent Mann-type inertial algorithm for solving split variational inclusion problems, Optim. Eng. 22 (2021), no. 1, 159-185. https://doi.org/10.1007/s11081-020-09501-2
  7. C. Baiocchi and A. Capelo, Variational and quasivariational inequalities, translated from the Italian by Lakshmi Jayakar, A Wiley-Interscience Publication, John Wiley & Sons, Inc., New York, 1984.
  8. J. Balooee, Iterative algorithm with mixed errors for solving a new system of generalized nonlinear variational-like inclusions and fixed point problems in Banach spaces, Chinese Ann. Math. Ser. B 34 (2013), no. 4, 593-622. https://doi.org/10.1007/s11401-013-0777-9
  9. J. Balooee, Resolvent algorithms for system of generalized nonlinear variational inclusions and fixed point problems, Afr. Mat. 25 (2014), no. 4, 1023-1042. https://doi.org/10.1007/s13370-013-0171-5
  10. M. I. Bhat, S. Shafi, and M. A. Malik, H-mixed accretive mapping and proximal point method for solving a system of generalized set-valued variational inclusions, Numer. Funct. Anal. Optim. 42 (2021), no. 8, 955-972. https://doi.org/10.1080/01630563.2021.1933527
  11. S. Chang, C.-F. Wen, and J.-C. Yao, A generalized forward-backward splitting method for solving a system of quasi variational inclusions in Banach spaces, Rev. R. Acad. Cienc. Exactas F'is. Nat. Ser. A Mat. RACSAM 113 (2019), no. 2, 729-747. https://doi.org/10.1007/s13398-018-0511-2
  12. X. P. Ding, Generalized quasi-variational-like inclusions with nonconvex functionals, Appl. Math. Comput. 122 (2001), no. 3, 267-282. https://doi.org/10.1016/S0096-3003(00)00027-8
  13. X. P. Ding and C. L. Luo, Perturbed proximal point algorithms for general quasivariational-like inclusions, J. Comput. Appl. Math. 113 (2000), no. 1-2, 153-165. https://doi.org/10.1016/S0377-0427(99)00250-2
  14. Y.-P. Fang and N.-J. Huang, H-monotone operator and resolvent operator technique for variational inclusions, Appl. Math. Comput. 145 (2003), no. 2-3, 795-803. https://doi.org/10.1016/S0096-3003(03)00275-3
  15. Y.-P. Fang and N.-J. Huang, H-accretive operators and resolvent operator technique for solving variational inclusions in Banach spaces, Appl. Math. Lett. 17 (2004), no. 6, 647-653. https://doi.org/10.1016/S0893-9659(04)90099-7
  16. Y.-P. Fang, N.-J. Huang, and H. B. Thompson, A new system of variational inclusions with (H, η)-monotone operators in Hilbert spaces, Comput. Math. Appl. 49 (2005), no. 2-3, 365-374. https://doi.org/10.1016/j.camwa.2004.04.037
  17. N.-J. Huang and Y.-P. Fang, Generalized m-accretive mappings in Banach spaces, J. Sichuan. Univ. 38 (2001), no. 4, 591-592.
  18. N.-J. Huang and Y.-P. Fang, Fixed point theorems and a new system of multivalued generalized order complementarity problems, Positivity 7 (2003), no. 3, 257-265. https://doi.org/10.1023/A:1026222030596
  19. N.-J. Huang and Y.-P. Fang, A new class of general variational inclusions involving maximal η-monotone mappings, Publ. Math. Debrecen 62 (2003), no. 1-2, 83-98. https://doi.org/10.5486/PMD.2003.2629
  20. J. K. Kim and D. S. Kim, A new system of generalized nonlinear mixed variational inequalities in Hilbert spaces, J. Convex Anal. 11 (2004), no. 1, 235-243.
  21. I. Konnov, Combined relaxation methods for variational inequalities, Lecture Notes in Economics and Mathematical Systems, 495, Springer-Verlag, Berlin, 2001. https://doi.org/10.1007/978-3-642-56886-2
  22. H. Lan, Stability of iterative processes with errors for a system of nonlinear (A, η)-accretive variational inclusions in Banach spaces, Comput. Math. Appl. 56 (2008), no. 1, 290-303. https://doi.org/10.1016/j.camwa.2007.12.007
  23. H.-Y. Lan, Y. J. Cho, and R. U. Verma, Nonlinear relaxed cocoercive variational inclusions involving (A, η)-accretive mappings in Banach spaces, Comput. Math. Appl. 51 (2006), no. 9-10, 1529-1538. https://doi.org/10.1016/j.camwa.2005.11.036
  24. C.-H. Lee, Q. H. Ansari, and J.-C. Yao, A perturbed algorithm for strongly nonlinear variational-like inclusions, Bull. Austral. Math. Soc. 62 (2000), no. 3, 417-426. https://doi.org/10.1017/S0004972700018931
  25. S. B. Nadler, Jr., Multi-valued contraction mappings, Pacific J. Math. 30 (1969), 475-488. http://projecteuclid.org/euclid.pjm/1102978504 102978504
  26. A. Nagurney, Network economics: a variational inequality approach, Advances in Computational Economics, 1, Kluwer Academic Publishers Group, Dordrecht, 1993. https://doi.org/10.1007/978-94-011-2178-1
  27. M. A. Noor and K. I. Noor, Multivalued variational inequalities and resolvent equations, Math. Comput. Modelling 26 (1997), no. 7, 109-121. https://doi.org/10.1016/S0895-7177(97)00189-1
  28. P. D. Panagiotopoulos and G. E. Stavroulakis, New types of variational principles based on the notion of quasidifferentiability, Acta Mech. 94 (1992), no. 3-4, 171-194. https://doi.org/10.1007/BF01176649
  29. M. Patriksson, Nonlinear programming and variational inequality problems, Applied Optimization, 23, Kluwer Academic Publishers, Dordrecht, 1999. https://doi.org/10.1007/978-1-4757-2991-7
  30. W. V. Petryshyn, A characterization of strict convexity of Banach spaces and other uses of duality mappings, J. Funct. Anal. 6 (1970), 282-291. https://doi.org/10.1016/0022-1236(70)90061-3
  31. Y. Qiu and X. Liu, Iterative algorithms for a system of variational inclusions involving set-valued quasi-contractive mappings in Banach spaces, Numer. Funct. Anal. Optim. 42 (2021), no. 8, 865-882. https://doi.org/10.1080/01630563.2021.1933519
  32. A. H. Siddiqi and R. Ahmad, Ishikawa type iterative algorithm for completely generalized nonlinear quasi-variational-like inclusions in Banach spaces, Math. Comput. Modelling 45 (2007), no. 5-6, 594-605. https://doi.org/10.1016/j.mcm.2006.07.008
  33. B. Tan, X. Qin, and J.-C. Yao, Strong convergence of self-adaptive inertial algorithms for solving split variational inclusion problems with applications, J. Sci. Comput. 87 (2021), no. 1, Paper No. 20, 34 pp. https://doi.org/10.1007/s10915-021-01428-9
  34. R. U. Verma, Generalized system for relaxed cocoercive variational inequalities and projection methods, J. Optim. Theory Appl. 121 (2004), no. 1, 203-210. https://doi.org/10.1023/B:JOTA.0000026271.19947.05
  35. Z. B. Wang and X. P. Ding, (H(., .), η)-accretive operators with an application for solving set-valued variational inclusions in Banach spaces, Comput. Math. Appl. 59 (2010), no. 4, 1559-1567. https://doi.org/10.1016/j.camwa.2009.11.003
  36. R. Wittmann, Approximation of fixed points of nonexpansive mappings, Arch. Math. (Basel) 58 (1992), no. 5, 486-491. https://doi.org/10.1007/BF01190119
  37. W.-Y. Yan, Y.-P. Fang, and N.-J. Huang, A new system of set-valued variational inclusions with H-monotone operators, Math. Inequal. Appl. 8 (2005), no. 3, 537-546. https://doi.org/10.7153/mia-08-49
  38. Y.-Z. Zou and N.-J. Huang, H(., .)-accretive operator with an application for solving variational inclusions in Banach spaces, Appl. Math. Comput. 204 (2008), no. 2, 809-816. https://doi.org/10.1016/j.amc.2008.07.024