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Abstract. In this paper, under some new appropriate conditions im-
posed on the parameter and mappings involved in the resolvent operator

associated with a P -accretive mapping, its Lipschitz continuity is proved

and an estimate of its Lipschitz constant is computed. This paper is also
concerned with the construction of a new iterative algorithm using the

resolvent operator technique and Nadler’s technique for solving a new
system of generalized multi-valued resolvent equations in a Banach space

setting. The convergence analysis of the sequences generated by our pro-

posed iterative algorithm under some appropriate conditions is studied.
The final section deals with the investigation and analysis of the notion

of H(·, ·)-co-accretive mapping which has been recently introduced and

studied in the literature. We verify that under the conditions considered
in the literature, everyH(·, ·)-co-accretive mapping is actually P -accretive

and is not a new one. In the meanwhile, some important comments on

H(·, ·)-co-accretive mappings and the results related to them appeared in
the literature are pointed out.

1. Introduction

Because of the importance and the wide applications in different areas of
science, engineering, social science, economics and management, the theory of
variational inequalities has increasingly received much attentions, and has been
greatly extended and generalized in various directions to study a wide class of
problems arising in physics, nonlinear programming, mechanics, optimization
and control, elasticity and applied science, etc., see for example [7,21,26,28,29]
and the references therein. Among generalizations of the variational inequality,
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the variational inclusion is very important and useful, and has been studied
intensively by many authors in the past years, see, for example, [2,6,8–11,14–
16,19,23,31,33,36] and the references therein.

The development of numerical methods which provide an efficient and imple-
mentable algorithm for solving variational inequality/inclusion and its general-
izations, is of the most important and interesting problems in the theory of vari-
ational inequalities and inclusions. There are many methods to find solutions
of different classes of variational inequality and variational inclusion problems.
Among these methods, the resolvent operator technique is very important and
interesting. With the development of an iterative algorithm to compute approx-
imate solutions of generalized variational inequalities/inclusions, the technique
of resolvent operators has become more and more important and efficient. For
this reason, in recent past, the methods based on different classes of resolvent
operators have been developed to study the existence of solutions and to discuss
convergence analysis of iterative algorithms, for various classes of variational
inclusions and their generalizations, see, for example, [2, 14–16, 19, 22, 23] and
the references therein.

Ding [12], Ding and Luo [13] and Lee et al. [24] have used subdifferentiability
and proximal mapping of a proper function on Hilbert space to study general
and generalized quasi-variational-like inclusions, respectively. In 2001, Huang
and Fang [17] were the first to introduce generalized m-accretive mapping.
They defined the resolvent operator associated with a generalized m-accretive
mapping and presented some properties related to it. By introducing a class
of generalized monotone operators, the so-called H-monotone operators, and
by defining their associated resolvent operators, Fang and Huang [14] studied
a class of variational inclusions involving H-monotone operators in the frame-
work of Hilbert spaces. Subsequently, Fang and Huang [15] further introduced
a class of generalized accretive operators, called H-accretive operators (also
referred to as P -accretive mapping in the literature), which extends the notion
of H-monotone operators to the Banach spaces. They defined the resolvent
operator associated with an H-accretive operator and gave some its impor-
tant properties. They also used the defined resolvent operator to construct
an iterative algorithm for finding the approximate solution of a class of vari-
ational inclusions involving H-accretive operator in a Banach space setting.
It is worth mentioning that in most of the resolvent operator methods, the
maximal monotonicity has played a key role, but recently introduced notions
of H-monotonicity and H-accretivity have not only generalized the maximal
monotonicity, but gave a new edge to resolvent operator methods. In 1990,
Siddiqi and Ansari [32] introduced and studied another useful and important
generalization of variational inequalities the so-called mixed variational inequal-
ity. Because of the involvement of nonlinear term in the formulations of mixed
variational inequalities, the projection method could not be applied to propose
iterative algorithms for solving them. Indeed, the applicability of the projec-
tion method is limited due to the fact that it is not easy to find the projection
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except in very special cases. Making use of the notion of resolvent operator
technique, Noor and Noor [27] introduced and studied resolvent equations and
proved the equivalence between the mixed variational inequalities and the re-
solvent equations. Later, Ahmad and Yao [5] considered and studied a system
of generalized resolvent equations in the framework of uniformly smooth Ba-
nach spaces by verifying its equivalence with a system of variational inclusions.
Zou and Huang [38] introduced and studied a class of generalized accretive
operators, called H(·, ·)-accretive operator as an extension of H-accretive op-
erator in a Banach space setting and defined its associated resolvent operator
for constructing an iterative algorithm in order to solve a class of variational
inclusions. Inspired and motivated by the above research works, Ahmad et
al. [3,4] introduced and studied H(·, ·)-cocoercive and H(·, ·)-co-accretive map-
pings, as generalizations of H(·, ·)-accretive operator, for solving variational
inclusion problems.

Recently, Ahmad and Akram [1] employed the notion of H(·, ·)-co-accretive
mapping and established the equivalence between a system of generalized resol-
vent equations involving generalized pseudocontractive mapping and a system
of variational inclusions. They also proved the existence of a solution for the
above-mentioned system of resolvent equations and studied the convergence
analysis of the sequences generated by their proposed iterative algorithm.

The purpose of this paper is twofold. Our first objective is to study a new
system of generalized multi-valued resolvent equations (for short, SGMRE) in-
volving P -accretive mappings in the framework of real Banach spaces. For
this end, the Lipschitz continuity of the resolvent operator associated with a
P -accretive mapping is proved under some new assumptions imposed on the pa-
rameter and mappings involved in it and an estimate of its Lipschitz constant is
computed. With the help of the resolvent operator technique, the equivalence
between the SGMRE and a system of generalized variational inclusions (for
short, SGVI) is established. We apply the obtained equivalence relationship
and Nadler’s technique to construct a new iterative scheme for finding the ap-
proximate solution of the SGMRE. The convergence analysis of the sequences
generated by our suggested iterative algorithm under some suitable conditions
is studied. The second objective of this paper is to investigate and analyze the
concept of H(·, ·)-co-accretive mapping introduced and studied in [1] and to
point out some important comments concerning it. We verify that under the
considered conditions by the authors in [1], every H(·, ·)-co-accretive mapping
is actually P -accretive and is not a new one. Some errors and mistakes in the
algorithms and main result of [1] are detected and the corresponding correct
versions of them are presented. At the same time, we point out that all results
given in [1] related to H(·, ·)-co-accretive mappings can be drawn by using our
results regarding P -accretive mappings provided in Sections 2 and 3 of this
paper.
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2. Preliminary matters and some notion

Before proceeding to the main results of the paper we recall the necessary
terminology and notation and few useful results. Throughout the paper, unless
otherwise specified, X is a fixed real Banach space with the dual space X∗. The
norms of the various Banach spaces that enter our discussion are all denoted by
the same symbol ∥·∥ as there is no occasion for confusion. As usual, the symbol
⟨·, ·⟩ will represent the duality pairing of X and X∗. The symbol CB(X) (resp.,
2X) is used to represent the set of all nonempty closed and bounded (resp., all
nonempty) subsets of X.

For a given multi-valued mapping M̂ : X → 2X ,

(i) the set Range(M̂) defined by

Range(M̂) = {y ∈ X : ∃x ∈ X : (x, y) ∈ M̂} =
⋃
x∈X

M̂(x)

is called the range of M̂ ;

(ii) the set Graph(M̂) defined by

Graph(M̂) = {(x, u) ∈ X ×X : u ∈ M̂(x)}

is called the graph of M̂ .

Let us recall that the normalized duality mapping F : X → 2X
∗
is defined

by

F(x) = {f ∈ X∗ : ⟨x, f⟩ = ∥x∥∥f∥, ∥x∥ = ∥f∥}, ∀x ∈ X.

We observe immediately that if X = H, a Hilbert space, then F is the
identity mapping on H. Moreover, it is an immediate consequence of the Hahn-
Banach theorem that F(x) is nonempty for each x ∈ X. In the sequel, j is
used to represent a selection of the normalized duality mapping F .

Definition 2.1. Let T : X → X be a single-valued mapping and F : X → 2X
∗

be the normalized duality mapping. Then T is said to be

(i) accretive if

⟨T (x)− T (y), j(x− y)⟩ ≥ 0, ∀x, y ∈ X, j(x− y) ∈ F(x− y);

(ii) strictly accretive if T is accretive and equality holds if and only if x = y;
(iii) k-strongly accretive if there exists a constant k > 0 such that

⟨T (x)− T (y), j(x− y)⟩ ≥ k∥x− y∥2, ∀x, y ∈ X, j(x− y) ∈ F(x− y);

(iv) ϱ-relaxed accretive if there exists a constant ϱ > 0 such that

⟨T (x)− T (y), j(x− y)⟩ ≥ −ϱ∥x− y∥2, ∀x, y ∈ X, j(x− y) ∈ F(x− y);

(v) ς-cocoercive if there exists a constant ς > 0 such that

⟨T (x)− T (y), j(x− y)⟩ ≥ ς∥T (x)− T (y)∥2, ∀x, y ∈ X, j(x− y) ∈ F(x− y);
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(vi) γ-relaxed cocoercive if there exists a constant γ > 0 such that

⟨T (x)− T (y), j(x− y)⟩ ≥ −γ∥T (x)− T (y)∥2, ∀x, y ∈ X, j(x− y)∈F(x− y);

(vii) α-expansive if there exists a constant α > 0 such that

∥T (x)− T (y)∥ ≥ α∥x− y∥, ∀x, y ∈ X;

(viii) k-contraction if there exists a constant 0 < k < 1 such that

∥T (x)− T (y)∥ ≤ k∥x− y∥, ∀x, y ∈ X;

(ix) β-Lipschitz continuous if there exists a constant β > 0 such that

∥T (x)− T (y)∥ ≤ β∥x− y∥, ∀x, y ∈ X.

Evidently, every contraction is a Lipschitz continuous mapping with a Lip-
schitz constant that is smaller than 1.

Definition 2.2. Let M̂ : X → 2X be a multi-valued mapping and F : X →
2X

∗
be the normalized duality mapping. Then M̂ is said to be

(i) accretive if

⟨u− v, j(x− y)⟩ ≥ 0, ∀(x, u), (y, v) ∈ Graph(M̂), j(x− y) ∈ F(x− y);

(ii) r-strongly accretive if there exists a constant r > 0 such that

⟨u− v, j(x− y)⟩ ≥ r∥x− y∥2, ∀(x, u), (y, v) ∈ Graph(M̂),

j(x− y) ∈ F(x− y);

(iii) ξ-relaxed accretive if there exists a constant ξ > 0 such that

⟨u− v, j(x− y)⟩ ≥ −ξ∥x− y∥2, ∀(x, u), (y, v) ∈ Graph(M̂),

j(x− y) ∈ F(x− y);

(iv) m-accretive if M̂ is accretive and (I + λM̂)(X) = X holds for every
real constant λ > 0, where I stands for the identity mapping.

We note that M̂ is an m-accretive mapping if and only if M̂ is accretive and

there is no other accretive mapping whose graph contains strictly Graph(M̂).

The m-accretivity is to be understood in terms of inclusion of graphs. If M̂ :
X → 2X is an m-accretive mapping, then adding anything to its graph so as
to obtain the graph of a new multi-valued mapping, destroys the accretivity. If
fact, the extended mapping is no longer accretive. In other words, for every pair

(x, u) ∈ X×X\Graph(M̂) there exists (y, v) ∈ Graph(M̂) and j(x−y) ∈ F(x−
y) such that ⟨u− v, j(x− y)⟩ < 0. Thanks to the argument mentioned above,

a necessary and sufficient condition for a multi-valued mapping M̂ : X → 2X

to be m-accretive is that for any (x, u) ∈ X ×X, the property

⟨u− v, j(x− y)⟩ ≥ 0, ∀(y, v) ∈ Graph(M̂), j(x− y) ∈ F(x− y)
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is equivalent to (x, u) ∈ Graph(M̂). The above characterization of m-accretive
mappings provides a useful and manageable way for recognizing that an element

u belongs to M̂(x).

Definition 2.3. For a given mapping P : X → X, the multi-valued mapping

M̂ : X → 2X is said to be

(i) P -accretive if M̂ is accretive and (P + λM̂)(X) = X holds for every
real constant λ > 0;

(ii) P -maximal m-relaxed accretive if M̂ is m-relaxed accretive and (P +

λM̂)(X) = X holds for every real constant λ > 0.

The following example illustrates that an m-accretive mapping may not be
P -accretive for some single-valued mapping P : X → X.

Example 2.1. Let ϕ : N → (0,+∞) and consider the complex linear space l2ϕ,

the weighted l2 space, the space of all complex sequences {zn}∞n=1 such that∑∞
n=1 |zn|2ϕ(n) < ∞. It is a well known truth that

l2ϕ = {z = {zn}∞n=1 :
∞∑

n=1

|zn|2ϕ(n) < ∞, zn ∈ C}

with respect to the inner product ⟨·, ·⟩ : l2ϕ × l2ϕ → C defined by

⟨z, w⟩ =
∞∑

n=1

znw̄nϕ(n), ∀z = {zn}∞n=1, w = {wn}∞n=1 ∈ l2ϕ

is a Hilbert space. The inner product defined above induces a norm on l2ϕ as
follows:

∥z∥l2ϕ =
√
⟨z, z⟩ = (

∞∑
n=1

|zn|2ϕ(n))
1
2 , ∀z = {zn}∞n=1 ∈ l2ϕ.

Any element z = {zn}∞n=1 = {xn + iyn}∞n=1 ∈ l2ϕ can be written as

z =

∞∑
k=1

(0, 0, . . . , 0, x2k−1 + iy2k−1, x2k + iy2k, 0, 0, . . . )

=

∞∑
k=1

[y2k−1 + y2k − i(x2k−1 + x2k)

2
(0, 0, . . . , 0, i2k−1, i2k, 0, 0, . . . )

+
y2k−1 − y2k − i(x2k−1 − x2k)

2
(0, 0, . . . , 0, i2k−1,−i2k, 0, 0, . . . )

]
=

∞∑
k=1

[y2k−1 + y2k − i(x2k−1 + x2k)

2
ω2k−1,2k

+
y2k−1 − y2k − i(x2k−1 − x2k)

2
ω′
2k−1,2k

]
,
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where for each k ∈ N, ω2k−1,2k = (0, 0, . . . , 0, i2k−1, i2k, 0, 0, . . . ), i at the
(2k − 1)th and (2k)th coordinates and all other coordinates are zero, and
ω′
2k−1,2k = (0, 0, . . . , 0, i2k−1,−i2k, 0, 0, . . . ), i and −i at the (2k − 1)th and

(2k)th places, respectively, and 0’s everywhere else. Therefore, the set B =
{ω2k−1,2k, ω

′
2k−1,2k : k ∈ N} spans the Banach space l2ϕ. It can be easily ob-

served that the set B is linearly independent and so it is a basis for l2ϕ. Taking

σ2k−1,2k = (0, 0, . . . , 0,
1√

2ϕ(2k − 1)
i2k−1,

1√
2ϕ(2k)

i2k, 0, 0, . . . )

and

σ′
2k−1,2k = (0, 0, . . . , 0,

1√
2ϕ(2k − 1)

i2k−1,−
1√

2ϕ(2k)
i2k, 0, 0, . . . )

for each k ∈ N, it goes without saying that {σ2k−1,2k, σ
′
2k−1,2k : k ∈ N} is

also linearly independent such that ∥σ2k−1,2k∥l2ϕ = ∥σ′
2k−1,2k∥l2ϕ = 1. Let the

mappings P, M̂ : l2ϕ → l2ϕ be defined, respectively, by P (z) = −αz + γσ′
2δ−1,2δ

and M̂(z) = αz + βσ2δ−1,2δ for all z ∈ l2ϕ, where δ is an arbitrary but fixed
natural number, α is an arbitrary positive real constant, and β and γ are two
arbitrary nonzero real constants. Then, for all z, w ∈ l2ϕ and j(z−w) ∈ F(z−w),
we yield

⟨M̂(z)− M̂(w), j(z − w)⟩ = ⟨M̂(z)− M̂(w), z − w⟩
= ⟨αz + βσ2δ−1,2δ − αw − βσ2δ−1,2δ, z − w⟩
= α⟨z − w, z − w⟩ = α∥z − w∥2 ≥ 0,

which means that M̂ is an accretive mapping. In the light of the fact that

for any z ∈ l2ϕ and λ > 0, (I + λM̂)(z) = (1 + λα)z + λβσ2δ−1,2δ, where I is

the identity mapping on l2ϕ, it follows that (I + λM̂)(l2ϕ) = l2ϕ for every real

constant λ > 0, that is, the mapping I + λM̂ is surjective for every positive

real constant λ. Accordingly, M̂ is an m-accretive mapping.
Thanks to the fact that for any z ∈ l2ϕ,

(P + M̂)(z) = βσ2δ−1,2δ + γσ′
2δ−1,2δ

= (0, 0, . . . , 0,
β√

2ϕ(2δ − 1)
i2δ−1,

β√
2ϕ(2δ)

i2δ, 0, 0, . . . )

+ (0, 0, . . . , 0,
γ√

2ϕ(2δ − 1)
i2δ−1,−

γ√
2ϕ(2δ)

i2δ, 0, 0, . . . )

= (0, 0, . . . , 0,
β + γ√

2ϕ(2δ − 1)
i2δ−1,

β − γ√
2ϕ(2δ)

i2δ, 0, 0, . . . ),

we conclude that for any z ∈ l2ϕ,

∥(P + M̂)(z)∥l2ϕ = ∥βσ2δ−1,2δ + γσ′
2δ−1,2δ∥l2ϕ = (β + γ)2 + (β − γ)2
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= 2(β2 + γ2) > 0.

This fact guarantees that 0 /∈ (P + M̂)(l2ϕ), where 0 is the zero vector of the

space l2ϕ. Consequently, P + M̂ is not surjective and so the mapping M̂ is not
P -accretive.

Denoting the set of all functions ϕ : N → (0, 1] by Φ and l2Φ = {l2ϕ : ϕ ∈
Φ}, it is easy to see that l2 ⊆ l2ϕ for each ϕ ∈ Φ so that for some ϕ0 ∈ Φ,

we have l2 ⊂ l2ϕ0
, that is, l2 is strictly contained within l2ϕ0

. We recall that

l2 = {x = {xn}∞n=1 :
∑∞

n=1 |xn|2 < ∞, xn ∈ F = R or C} denotes the real or
complex linear space consisting of all square-summable sequences x = {xn}∞n=1

for which ∥x∥l2 < ∞. Evidently, if ϕ(n) = 1 for all n ∈ N, then the weight space
l2ϕ coincides exactly with the linear space l2. It is significant to mention that the

two Hilbert spaces l2 and l2ϕ need not be the same for all ϕ ∈ Φ. In order to show
this fact, we consider the two cases when F = R or C. If F = R, letting xn = lnn
for all n ∈ N, we have

∑∞
n=1 |xn|2 =

∑∞
n=1(lnn)

2 = ∞, i.e., x = {xn}∞n=1 /∈ l2.
Defining ϕ1 : N → (0,+∞) by ϕ1(n) =

1
n4 for all n ∈ N, we have ϕ1 ∈ Φ and∑∞

n=1 |xn|2ϕ1(n) =
∑∞

n=1
(lnn)2

n4 . Since
∑∞

n=1
(lnn)2

n4 is convergent, it follows

that x ∈ l2ϕ1
. In the case where F = C, letting zn = n!√

2
+ i n!√

2
for all n ∈ N, we

have
∑∞

n=1 |zn|2 =
∑∞

n=1(n!)
2 = ∞ which ensures that z = {zn}∞n=1 /∈ l2. Now,

let ϕ2 : N → (0,+∞) be defined by ϕ2(n) = e−n2

for all n ∈ N. Then we have

ϕ2 ∈ Φ and
∑∞

n=1 |zn|2ϕ2(n) =
∑∞

n=1
(n!)2

en2 . Since
∑∞

n=1
(n!)2

en2 is convergent, we

conclude that z = {zn}∞n=1 ∈ l2ϕ2
. Therefore, for some ϕ ∈ Φ, l2ϕ is a proper

superset of the Hilbert space l2.

Example 2.2. Let m,n ∈ N be arbitrary but fixed and let Mm×n(F) be the
space of all m× n matrices with real or complex entries. Then

Mm×n(F) = {A = (aij) | aij ∈ F, i = 1, 2, . . . ,m; j = 1, 2, . . . , n;F = R or C}

is a Hilbert space with respect to the Hilbert-Schmidt norm

∥A∥ =
( m∑
i=1

n∑
j=1

|aij |2
) 1

2 , ∀A ∈ Mm×n(F)

induced by the Hilbert-Schmidt inner product

⟨A,B⟩ = tr(A∗B) =

m∑
i=1

n∑
j=1

āijbij , ∀A,B ∈ Mm×n(F),

where tr denotes the trace, that is, the sum of the diagonal entries, and A∗

denotes the Hermitian conjugate (or adjoint) of the matrix A, that is, A∗ =

At, the complex conjugate of the transpose A, and the bar denotes complex
conjugation and superscript denotes the transpose of the entries. Let us denote
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by Dn(R) the space of all diagonal n×n matrices with real entries, that is, the
(i, j)-entry is an arbitrary real number if i = j, and is zero if i ̸= j. Then

Dn(R) = {A = (aij) | aij ∈ R, aij = 0 if i ̸= j; i, j = 1, 2, . . . , n}
is a subspace of Mn×n(R) = Mn(R) with respect to the operations of addition
and scalar multiplication defined on Mn(R), and the Hilbert-Schmidt inner
product on Dn(R), and the Hilbert-Schmidt norm induced by it become as

⟨A,B⟩ = tr(A∗B) = tr(AB)

and

∥A∥ =
√
⟨A,A⟩ =

√
tr(AA) =

( n∑
i=1

a2ii
) 1

2 ,

respectively. Let the mappings P1, P2, M̂ : Dn(R) → Dn(R) be defined by

P1(A) = P1((aij)) =
(
a′ij

)
, P2(A) = P2((aij)) =

(
a′′ij

)
and M̂(A) = M̂((aij)) =(

a′′′ij
)
for all A = (aij) ∈ Dn(R), respectively, where for each i, j ∈ {1, 2, . . . , n},

a′ij =

{
|aii − β|+ |aii − γ| − ϱakii − µ l

√
aii, i = j,

0, i ̸= j,

a′′ij =

{
ςaii−1
ςaii+1 , i = j,

0, i ̸= j,

and

a′′′ij =

{
ϱakii + µ l

√
aii, i = j,

0, i ̸= j,

where ϱ, µ and ς are arbitrary positive real constants, β and γ are arbitrary real
constants such that β ≥ γ, and k, l are arbitrary but fixed odd natural numbers.
Then, for any A = (aij) , B = (bij) ∈ Dn(R) and j(A − B) ∈ F(A − B), we
yield

⟨M̂(A)− M̂(B), j(A−B)⟩ = ⟨M̂(A)− M̂(B), A−B⟩

= tr
( (

a′′′ij − b′′′ij
)
(aij − bij)

)
=

n∑
i=1

(
ϱ(akii − bkii) + µ( l

√
aii − l

√
bii)

)
(aii − bii)

= ϱ

n∑
i=1

(aii − bii)
2

k∑
t=1

ak−t
ii bt−1

ii

+ µ

n∑
i=1

( l
√
aii − l

√
bii)(aii − bii).

For any i ∈ {1, 2, . . . , n},
(i) if aii = bii = 0, then ( l

√
aii − l

√
bii)(aii − bii) = 0;

(ii) if aii ̸= 0 and bii = 0, then ( l
√
aii − l

√
bii)(aii − bii) = aii l

√
aii =

l

√
al+1
ii ;
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(iii) if aii = 0 and bii ̸= 0, then ( l
√
aii − l

√
bii)(aii − bii) = bii

l
√
bii =

l

√
bl+1
ii ;

(iv) if aii, bii ̸= 0, then l
√
aii − l

√
bii =

aii−bii∑l
r=1

l
√

al−r
ii br−1

ii

.

Since l is an odd natural number, we conclude that l

√
al+1
ii , l

√
bl+1
ii > 0 and∑l

r=1
l

√
al−r
ii br−1

ii > 0. In view of these facts, we infer that ( l
√
aii − l

√
bii)(aii −

bii) > 0 and

n∑
i=1

( l
√
aii − l

√
bii)(aii − bii) =

n∑
i=1

(aii − bii)
2∑l

r=1
l

√
al−r
ii br−1

ii

> 0.

In the meanwhile, due to the fact that k is an odd natural number, it can be

easily seen that for each i ∈ {1, 2, . . . , n},
∑k

t=1 a
k−t
ii bt−1

ii ≥ 0. In the light
of the arguments mentioned above and the fact that ϱ and µ are positive, we
deduce that for any A = (aij) , B = (bij) ∈ Dn(R) and j(A−B) ∈ F(A−B),

⟨M̂(A)− M̂(B), j(A−B)⟩ ≥ 0,

that is, M̂ is an accretive mapping.
Let f : R → R be a function defined by f(x) := |x − β| + |x − γ| for all

x ∈ R. Then, for any A = (aij) ∈ Dn(R), we have

(P1 + M̂)(A) = (P1 + M̂)((aij)) =
(
a′ij + a′′′ij

)
= (âij) ,

where for each i, j ∈ {1, 2, . . . , n},

âij =

{
|aii − β|+ |aii − γ|, i = j,
0, i ̸= j,

=

{
f(aii), i = j,
0, i ̸= j.

The fact that f(R) = [β − γ,+∞) implies that (P1 + M̂)(Dn(R)) ̸= Dn(R),
i.e., P1 + M̂ is not surjective, and so M̂ is not a P1-η-accretive mapping. Now,
assume that the real constant λ > 0 is chosen arbitrarily but fixed and let the
function g : R → R be defined by g(x) := ςx−1

ςx+1 + λϱxk + λµ l
√
x for all x ∈ R.

Then, for any A = (aij) ∈ Dn(R), yields

(P2 + λM̂)(A) = (P2 + λM̂)((aij)) =
(
a′′ij + λa′′′ij

)
= (ãij) ,

where for each i, j ∈ {1, 2, . . . , n},

ãij =

{
ςaii−1
ςaii+1 + λϱakii + λµ l

√
aii, i = j,

0, i ̸= j
=

{
g(aii), i = j,
0, i ̸= j.

Relying on the fact that k and l are odd natural numbers, it is easy to observe

that g(R) = R, which guarantees that (P2 + λM̂)(Dn(R)) = Dn(R), that is,

P2 + λM̂ is a surjective mapping. Taking into account the arbitrariness in the

choice of λ > 0, we conclude that M̂ is a P2-accretive mapping.
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It should be pointed out that if P = I, then the definition of I-accretive
mappings is that of m-accretive mappings. In fact, the class of P -accretive
mappings has close relation with that of m-accretive mappings.

Proposition 2.1. Let P : X → X be a strictly accretive mapping and let

M̂ : X → 2X be a P -accretive mapping. Then M̂ is m-accretive.

Proof. Taking into account of the fact that M̂ is accretive, in order to show that

M̂ is m-accretive, it is sufficient to prove that for any given points x, u ∈ X, the

inequality ⟨u− v, j(x− y)⟩ ≥ 0 holds for all (y, v) ∈ Graph(M̂) and j(x− y) ∈
F(x − y) implies that (x, u) ∈ Graph(M̂). For this end, by contradiction, let

us suppose that there exists some (x0, u0) /∈ Graph(M̂) such that

⟨u0 − v, j(x0 − y)⟩ ≥ 0, ∀(y, v) ∈ Graph(M̂), j(x0 − y) ∈ F(x0 − y).(2.1)

In the light of the fact that M̂ is P -accretive we have (P + λM̂)(X) = X for

every constant λ > 0. Consequently, there exists (x1, u1) ∈ Graph(M̂) such
that

P (x1) + λu1 = P (x0) + λu0.(2.2)

Since (x1, u1) ∈ Graph(M̂), replacing (y, v) by (x1, u1) in (2.1) and with the
help of (2.2),

−⟨P (x0)− P (x1), j(x0 − x1)⟩ = λ⟨u0 − u1, x0 − x1⟩ ≥ 0,

∀j(x0 − x1) ∈ F(x0 − x1),

which implies that

⟨P (x0)− P (x1), j(x0 − x1)⟩ ≤ 0, ∀j(x0 − x1) ∈ F(x0 − x1).(2.3)

On the other hand, from accretivity of P it follows that

⟨P (x0)− P (x1), j(x0 − x1)⟩ ≥ 0, ∀j(x0 − x1) ∈ F(x0 − x1).(2.4)

By (2.3) and (2.4) and the strict accretivity of P we conclude that x0 = x1.

Then (2.2) implies that u0 = u1 and so (x0, u0) ∈ Graph(M̂), which con-
tradicts with our assumption. Accordingly for any given points x, u ∈ X,

if the inequality ⟨u − v, j(x − y)⟩ ≥ 0 holds for all (y, v) ∈ Graph(M̂) and

j(x− y) ∈ F(x− y), then we have (x, u) ∈ Graph(M̂). This property guaran-

tees that M̂ is m-accretive. This completes the proof. □

Theorem 2.1. Let P : X → X be an accretive mapping and M̂ : X → 2X be

a ϱ-strongly accretive mapping. Then, the mapping (P + λM̂)−1 : Range(P +

λM̂) → X is single-valued for every constant λ > 0.

Proof. Choose real constant λ > 0 arbitrarily. For any given point u ∈
Range(P + λM̂), let x, y ∈ (P + λM̂)−1(u). Then, we have

u = (P + λM̂)(x) = (P + λM̂)(y),
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form which we yield λ−1(u − P (x)) ∈ M̂(x) and λ−1(u − P (y)) ∈ M̂(y).

Considering the fact that P is accretive and M̂ is ϱ-strongly accretive, it follows
that

λϱ∥x− y∥2 ≤ λ⟨λ−1(u− P (x))− λ−1(u− P (y)), j(x− y)⟩
+ ⟨P (x)− P (y), j(x− y)⟩ = 0

for all j(x− y) ∈ F(x− y). Since λ, ϱ > 0, from the last inequality we deduce

that x = y, which implies that the mapping (P +λM̂)−1 from Range(P +λM̂)
into X is single-valued. This gives us the desired result. □

We should remark that in the rest of the paper, whenever we say that M̂ is

a ϱ-strongly P -accretive mapping, our mean is that M̂ is a ϱ-strongly accretive

mapping and (P + λM̂)(X) = X holds for every constant λ > 0.
We obtain the following assertion as an immediate consequence of the last

result.

Corollary 2.1. Suppose that P : X → X is an accretive mapping and M̂ :

X → 2X is a ϱ-strongly P -accretive mapping. Then, the mapping (P+λM̂)−1 :
X → X is single-valued for every constant λ > 0.

Clearly, Corollary 2.1 enables us to define the notion of resolvent operator

RP
λ,M̂

associated with P, M̂ and an arbitrary positive real constant λ as follows.

Definition 2.4. Assume that P : X → X is an accretive mapping and M̂ :
X → 2X is a γ-strongly P -accretive mapping. For every real constant λ > 0,
the resolvent operator RP

λ,M̂
is defined by

RP
λ,M̂

(x) = (P + λM̂)−1(x), ∀x ∈ X.

We now conclude this section with the following theorem in which the ap-
propriate conditions for the resolvent operator RP

λ,M̂
to be Lipschitz continuous

are stated and an estimate of its Lipschitz constant is also given.

Theorem 2.2. Let P : X → X be a ξ-strongly accretive mapping and M̂ :
X → 2X be a ϱ-strongly P -accretive mapping. Then, for any real constant
λ > 0, the resolvent operator RP

λ,M̂
: X → X is 1

λϱ+ξ -Lipschitz continuous,

i.e.,

∥RP
λ,M̂

(x)−RP
λ,M̂

(y)∥ ≤ 1

λϱ+ ξ
∥x− y∥, ∀x, y ∈ X.

Proof. Taking into consideration the fact that the mapping M̂ is P -accretive,
for any given points x, y ∈ X with ∥RP

λ,M̂
(x)−RP

λ,M̂
(y)∥ ≠ 0, we have

RP
λ,M̂

(x) = (P + λM̂)−1(x) and RP
λ,M̂

(y) = (P + λM̂)−1(y),
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which imply that

λ−1(x−P (RP
λ,M̂

(x))∈M̂(RP
λ,M̂

(x))) and λ−1(y−P (RP
λ,M̂

(y))∈M̂(RP
λ,M̂

(y))).

Since M̂ is ϱ-strongly accretive, it follows that

λ−1⟨x− P (RP
λ,M̂

(x))− (y − P (RP
λ,M̂

(y))), j(RP
λ,M̂

(x)−RP
λ,M̂

(y))⟩

≥ ϱ∥RP
λ,M̂

(x)−RP
λ,M̂

(y)∥2

for all j(RP
λ,M̂

(x)−RP
λ,M̂

(y)) ∈ F(RP
λ,M̂

(x)−RP
λ,M̂

(y)). Owing to the fact that

λ−1 > 0, using the preceding inequality we yield

⟨x− y, j(RP
λ,M̂

(x)−RP
λ,M̂

(y))⟩

≥ λϱ∥RP
λ,M̂

(x)−RP
λ,M̂

(y)∥2

+ ⟨P (RP
λ,M̂

(x))− P (RP
λ,M̂

(y)), j(RP
λ,M̂

(x)−RP
λ,M̂

(y))⟩

(2.5)

for all j(RP
λ,M̂

(x)−RP
λ,M̂

(y)) ∈ F(RP
λ,M̂

(x)−RP
λ,M̂

(y)).

From ξ-strong accretivity of P and by means of (2.5), it follows that for all
j(RP

λ,M̂
(x)−RP

λ,M̂
(y)) ∈ F(RP

λ,M̂
(x)−RP

λ,M̂
(y)),

∥x− y∥∥RP
λ,M̂

(x)−RP
λ,M̂

(y)∥

= ∥x− y∥∥j(RP
λ,M̂

(x)−RP
λ,M̂

(y))∥

≥ ⟨x− y, j(RP
λ,M̂

(x)−RP
λ,M̂

(y))⟩

≥ λϱ∥RP
λ,M̂

(x)−RP
λ,M̂

(y)∥2

+ ⟨P (RP
λ,M̂

(x))− P (RP
λ,M̂

(y)), j(RP
λ,M̂

(x)−RP
λ,M̂

(y))⟩

≥ λϱ∥RP
λ,M̂

(x)−RP
λ,M̂

(y)∥2 + ξ∥RP
λ,M̂

(x)−RP
λ,M̂

(y)∥2

= (λϱ+ ξ)∥RP
λ,M̂

(x)−RP
λ,M̂

(y)∥2.

In virtue of the fact that ∥RP
λ,M̂

(x)−RP
λ,M̂

(y)∥ ≠ 0, we conclude that

∥RP
λ,M̂

(x)−RP
λ,M̂

(y)∥ ≤ 1

λϱ+ ξ
∥x− y∥.

This completes the proof. □

3. Formulations, iterative algorithms and convergence results

Let for each i ∈ {1, 2}, Xi be a real Banach space and Pi : Xi → Xi be an
accretive mapping. Suppose that S : X1×X2 → X1 and T : X1×X2 → X2 are
any nonlinear mappings, and E : X1 → 2X1 and F : X2 → 2X2 are multivalued
mappings. Furthermore, let for each i ∈ {1, 2}, the multi-valued mapping

M̂i : Xi → 2Xi be a ϱi-strongly Pi-accretive mapping. For given two arbitrary
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real constants λ1, λ2 > 0, we consider the problem of finding (x, y) ∈ X1 ×X2,
u ∈ E(x), v ∈ F (y), z′ ∈ X1 and z′′ ∈ X2 such that{

S(x, v) + λ−1
1 JP1

λ1,M̂1
(z′) = 0,

T (u, y) + λ−1
2 JP2

λ2,M̂2
(z′′) = 0,

(3.1)

where for each i ∈ {1, 2}, JPi

λi,M̂i
= Ii − Pi ◦ RPi

λi,M̂i
= Ii − Pi(R

Pi

λi,M̂i
(·)),

Ii is the identity mapping on Xi, R
Pi

λi,M̂i
is the resolvent operator associated

with Pi, positive real constant λi and strongly Pi-accretive mapping M̂i, and
Pi◦RPi

λi,M̂i
denotes Pi composition RPi

λi,M̂i
. The problem (3.1) is called a system

of generalized multi-valued resolvent equations (SGMRE).

Let Xi, Pi, M̂i (i = 1, 2), S, T , E and F be the same as in the SGMRE (3.1).
Corresponding to the SGMRE (3.1), we now consider the following system of
generalized variational inclusions (SGVI): find (x, y) ∈ X1×X2, u ∈ E(x) and
v ∈ F (y) such that {

0 ∈ S(x, v) + M̂1(x),

0 ∈ T (u, y) + M̂2(y).
(3.2)

We remark that for appropriate choices of the mappings Pi, M̂i (i = 1, 2),
S, T , E and F , and the underlying spaces Xi (i = 1, 2), the SGVI (3.2)
includes various systems of variational inequalities/inclusions and many classes
of variational inequality/inclusion problems, see, for example, [18,20,34,35,37]
and the references therein.

The following conclusion, which has a prominent role in getting the main
results of this paper, follows directly from Definition 2.1 and some simple ar-
guments.

Lemma 3.1. Let Xi, Pi, M̂i (i = 1, 2), S, T , E and F be the same as in the
SGMRE (3.1). Then (x, y, u, v) ∈ X1 ×X2 × E(x)× F (y) is a solution of the
SGVI (3.2) if and only if (x, y, u, v) satisfies the relations{

x = RP1

λ1,M̂1
[P1(x)− λ1S(x, v)],

y = RP2

λ2,M̂2
[P2(y)− λ2T (u, y)],

where λi > 0 and RPi

λi,M̂i
(i = 1, 2) are the same as in the SGMRE (3.1).

The next assertion, which tells the SGMRE (3.1) and the SGVI (3.2) are
equivalent, plays a key role in proposing algorithms and in the study of our
suggested iterative algorithms.

Proposition 3.1. Assume that Xi, Pi, M̂i (i = 1, 2), S, T , E and F are the
same as in the SGMRE (3.1). Then (x, y, u, v) with (x, y) ∈ X1×X2, u ∈ E(x)
and v ∈ F (y) is a solution of the SGVI (3.2) if and only if (x, y, u, v, z′, z′′),
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where (z′, z′′) ∈ X1 ×X2, is a solution of the SGMRE (3.1) satisfying
x = RP1

λ1,M̂1
(z′),

y = RP2

λ2,M̂2
(z′′),

z′ = P1(x)− λ1S(x, v),
z′′ = P2(y)− λ2T (u, y),

(3.3)

where λi > 0 and RPi

λi,M̂i
(i = 1, 2) are the same as in the SGMRE (3.1).

Proof. In the light of Lemma 3.1, (x, y, u, v) ∈ X1 × X2 × E(x) × F (y) is a
solution of the SGVI (3.2) if and only if{

x = RP1

λ1,M̂1
[P1(x)− λ1S(x, v)],

y = RP2

λ2,M̂2
[P2(y)− λ2T (u, y)]

⇔ 
x = RP1

λ1,M̂1
(z′),

y = RP2

λ2,M̂2
(z′′),

z′ = P1(x)− λ1S(x, v),
z′′ = P2(y)− λ2T (u, y)

⇔ {
z′ = P1(R

P1

λ1,M̂1
(z′))− λ1S(x, v),

z′′ = P2(R
P2

λ2,M̂2
(z′′))− λ2T (u, y)

⇔ { (
I1 − P1 ◦RP1

λ1,M̂1

)
(z′) = −λ1S(x, v),(

I2 − P2 ◦RP2

λ2,M̂2

)
(z′′) = −λ2T (u, y)

⇔ {
S(x, v) + λ−1

1 JP1

λ1,M̂1
(z′) = 0,

T (u, y) + λ−1
2 JP2

λ2,M̂2
(z′′) = 0

where for i = 1, 2, JPi

λi,M̂i
= Ii − Pi ◦RPi

λi,M̂i
. Consequently, (x, y, u, v, z′, z′′) ∈

X1×X2×E(x)×F (y)×X1×X2 is a solution of the SGMRE (3.1). Accordingly,
the solution sets of the two systems (3.1) and (3.2) are the same. The proof is
finished. □

According to the remark which followed the proof of Theorem 5 in [25],
for any A,B ∈ CB(X), a ∈ A and η > 0, there exists a b ∈ B such that
d(a, b) ≤ D(A,B) + η ([25, page 480, lines 12–14]). As a direct consequence
of this fact, for any ε > 0 and for any given x, y ∈ X, u ∈ T (x), taking
η = εD(T (x), T (y)), we have the following assertion which plays a key role in
the sequel.
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Lemma 3.2. Let X be a complete metric space, and T : X → CB(X) be
a multi-valued mapping. Then for any ε > 0 and for any given x, y ∈ X,
u ∈ T (x), there exists v ∈ T (y) such that

∥u− v∥ ≤ (1 + ε)D(T (x), T (y)),

where D(·, ·) is the Hausdorff metric on CB(X) defined by

D(A,B) = max{sup
x∈A

inf
y∈B

∥x− y∥, sup
y∈B

inf
x∈A

∥x− y∥}, ∀A,B ∈ CB(X).

Based on Proposition 3.1 and with the help of Nadler’s technique [25], we
are able to construct an iterative algorithm for approximating the solution of
the SGMRE (3.1) as follows.

Algorithm 3.1. Let Xi, Pi, M̂i (i = 1, 2), S, T , E and F be the same as
in the SGMRE (3.1). For any given (x0, y0), (z

′
0, z

′′
0 ) ∈ X1 × X2, u0 ∈ E(x0)

and v0 ∈ F (y0), define the iterative sequences {xn}∞n=0, {yn}∞n=0, {un}∞n=0,
{vn}∞n=0, {z′n}∞n=0 and {z′′n}∞n=0 in the following way:

xn = RP1

λ1,M̂1
(z′n),

yn = RP2

λ2,M̂2
(z′′n),

un ∈ E(xn); ∥un+1 − un∥1 ≤ (1 + 1
1+n )D1(E(xn+1), E(xn)),

vn ∈ F (yn); ∥vn+1 − vn∥2 ≤ (1 + 1
1+n )D2(F (yn+1), F (yn)),

z′n+1 = P1(xn)− λ1S(xn, vn),
z′′n+1 = P2(yn)− λ2T (un, yn),

(3.4)

where n = 0, 1, 2, . . . ; λi > 0 (i = 1, 2) are positive real constants, and for
i = 1, 2, Di is the Hausdorff metric on CB(Xi).

Before stating the main result of this section, we need to define and recall
some specific notions and an efficient lemma.

Definition 3.1. A multi-valued mapping S : X → CB(X) is said to be D-
Lipschitz continuous with constant λS (or λS-D-Lipschitz continuous) if there
exits a constant λS > 0 such that

D(S(x), S(y)) ≤ λS∥x− y∥, ∀x, y ∈ X,

where D(·, ·) is the Hausdorff metric on CB(X).

Definition 3.2. LetX be a real Banach space and F be the normalized duality
mapping from X into X∗. A mapping P : X → X is said to be ς-generalized
pseudocontractive if there exits a constant ς > 0 such that for any x, y ∈ X,

⟨P (x)− P (y), j(x− y)⟩ ≤ ς∥x− y∥2, ∀j(x− y) ∈ F(x− y).

Definition 3.3. A mapping T : X ×X → X is said to be

(i) λT1
-Lipschitz continuous in the first argument if there exits a constant

λT1
> 0 such that

∥T (x, u)− T (y, u)∥ ≤ λT1
∥x− y∥2, ∀x, y, u ∈ X;
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(ii) λT2
-Lipschitz continuous in the second argument if there exits a con-

stant λT2
> 0 such that

∥T (u, x)− T (u, y)∥ ≤ λT2∥x− y∥2, ∀x, y, u ∈ X.

Lemma 3.3 ([30]). Let X be a real Banach space and F be the normalized
duality mapping from X into X∗. Then, for any x, y ∈ X,

∥x+ y∥2 ≤ ∥x∥2 + 2⟨y, j(x+ y)⟩, ∀j(x+ y) ∈ F(x+ y).

Theorem 3.1. Let for each i ∈ {1, 2}, Xi be a real Banach space, Pi : Xi → Xi

be a ζi-strongly accretive, ri-contraction, and ςi-generalized pseudocontractive

mapping, and M̂i : Xi → 2Xi be a ϱi-strongly Pi-accretive mapping. Assume
that S : X1 × X2 → X1 is λS1

-Lipschitz continuous and λS2
-Lipschitz con-

tinuous in the first and second arguments, respectively, T : X1 ×X2 → X2 is
λT1

-Lipschitz continuous and λT2
-Lipschitz continuous in the first and second

arguments, respectively, and the multi-valued mappings E : X1 → CB(X1) and
F : X2 → CB(X2) are λDE

-D1-Lipschitz continuous and λDF
-D2-Lipschitz

continuous, respectively. If there exist constants λi > 0 (i = 1, 2) such that{
0 < L̂1(K̂1 +

√
θ1 +

√
θ3) < 1,

0 < L̂2(K̂2 +
√
θ2 +

√
θ4) < 1,

(3.5)

where

K̂i =

√
1 + 2ςi + 3ri

1− ri
, L̂i =

1

λiϱi + ζi
, (i = 1, 2),

θ1 =
1 + λ1λS1

1− λ1(λS1
+ λS2

λDF
)
, θ2 =

λ1λS2
λDF

1− λ1(λS1
+ λS2

λDF
)
,

θ3 =
λ2λT1λDE

1− λ2(λT1
λDE

+ λT2
)
, θ4 =

1 + λ2λT2

1− λ2(λT1
λDE

+ λT2
)
,

λ1(λS1 + λS2λDF
) < 1, λ2(λT1λDE

+ λT2) < 1,

then, the iterative sequences {xn}∞n=0, {yn}∞n=0, {un}∞n=0, {vn}∞n=0, {z′n}∞n=0

and {z′′n}∞n=0 generated by Algorithm 3.1 converge strongly to x, y, u, v, z′ and
z′′, respectively, and (x, y, u, v, z′, z′′) is a solution of the SGMRE (3.1).

Proof. Making use of (3.3), it follows that

∥z′n+1 − z′n∥1
= ∥P1(xn)− λ1S(xn, vn)− (P1(xn−1)− λ1S(xn−1, vn−1))∥1
≤ ∥xn − xn−1 + P1(xn)− P1(xn−1)∥1

+ ∥xn − xn−1 + λ1(S(xn, vn)− S(xn−1, vn−1))∥1.

(3.6)

Utilizing Lemma 3.3 and taking into account that the mapping P1 is r1-
contraction and ς1-generalized pseudocontractive, we yield

∥xn − xn−1 + P1(xn)− P1(xn−1)∥21
≤ ∥xn − xn−1∥21 + 2⟨P1(xn)− P1(xn−1), j1(xn − xn−1 + P1(xn)− P1(xn−1))⟩1
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≤ ∥xn − xn−1∥21 + 2⟨P1(xn)− P1(xn−1), j1(xn − xn−1)⟩1
+ 2⟨P1(xn)− P1(xn−1), j1(xn − xn−1 + P1(xn)− P1(xn−1))

− j1(xn − xn−1)⟩1
≤ ∥xn − xn−1∥21 + 2⟨P1(xn)− P1(xn−1), j1(xn − xn−1)⟩1

+ 2
(
∥P1(xn)− P1(xn−1)∥1(∥xn − xn−1 + P1(xn)− P1(xn−1)∥1

+ ∥xn − xn−1∥1)
)

≤ ∥xn − xn−1∥21 + 2ς1∥xn − xn−1∥21 + 2
(
r1∥xn − xn−1∥1(∥xn − xn−1

+ P1(xn)− P1(xn−1)∥1 + ∥xn − xn−1∥1)
)

= ∥xn − xn−1∥21 + 2ς1∥xn − xn−1∥21 + r1
(
2∥xn − xn−1∥1∥xn − xn−1

+ P1(xn)− P1(xn−1)∥1
)
+ 2r1∥xn − xn−1∥21

≤ ∥xn − xn−1∥21 + 2ς1∥xn − xn−1∥21 + r1(∥xn − xn−1∥21
+ ∥xn − xn−1 + P1(xn)− P1(xn−1)∥21) + 2r1∥xn − xn−1∥21

= (1 + 2ς1 + 3r1)∥xn − xn−1∥21 + r1∥xn − xn−1 + P1(xn)− P1(xn1)∥21,

which implies that

∥xn − xn−1 + P1(xn)− P1(xn−1)∥1 ≤ K̂1∥xn − xn−1∥1,(3.7)

where K̂1 =
√

1+2ς1+3r1
1−r1

. Again, by using Lemma 3.3, and in virtue of the

facts that the mapping S is λS1
-Lipschitz continuous in the first argument

and λS2
-Lipschitz continuous in the second argument, and the mapping F is

λDF
-D2-Lipschitz continuous, we obtain

∥xn − xn−1 + λ1(S(xn, vn)− S(xn−1, vn−1))∥21
≤ ∥xn − xn−1∥21 + 2λ1⟨S(xn, vn)− S(xn−1, vn−1),

j1(xn − xn−1 + λ1(S(xn, vn)− S(xn−1, vn−1)))⟩1
≤ ∥xn − xn−1∥21 + 2λ1∥S(xn, vn)− S(xn−1, vn−1)∥1

× ∥xn − xn−1 + λ1(S(xn, vn)− S(xn−1, vn−1))∥1
≤ ∥xn − xn−1∥21 + 2λ1

(
∥S(xn, vn)− S(xn−1, vn)∥1

+ ∥S(xn−1, vn)− S(xn−1, vn−1)∥1
)

× ∥xn − xn−1 + λ1(S(xn, vn)− S(xn−1, vn−1))∥1
≤ ∥xn − xn−1∥21 + 2λ1

(
λS1

∥xn − xn−1∥1 + λS2
∥vn − vn−1∥2

)
× ∥xn − xn−1 + λ1(S(xn, vn)− S(xn−1, vn−1))∥1

≤ ∥xn − xn−1∥21 + 2λ1(λS1
∥xn − xn−1∥1

+ λS2
λDF

(1 +
1

1 + n
)∥yn − yn−1∥2)

× ∥xn − xn−1 + λ1(S(xn, vn)− S(xn−1, vn−1))∥1
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= ∥xn − xn−1∥21 + 2λ1λS1
∥xn − xn−1∥1

× ∥xn − xn−1 + λ1(S(xn, vn)− S(xn−1, vn−1))∥1

+ 2λ1λS2
λDF

(1 +
1

1 + n
)∥yn − yn−1∥2

× ∥xn − xn−1 + λ1(S(xn, vn)− S(xn−1, vn−1))∥1
≤ ∥xn − xn−1∥21 + λ1λS1

(
∥xn − xn−1∥21

+ ∥xn − xn−1 + λ1(S(xn, vn)− S(xn−1, vn−1))∥21
)

+ λ1λS2
λDF

(1 +
1

1 + n
)
(
∥yn − yn−1∥22

+ ∥xn − xn−1 + λ1(S(xn, vn)− S(xn−1, vn−1))∥21
)

= ∥xn − xn−1∥21 + λ1λS1
∥xn − xn−1∥21

+ λ1λS2
λDF

(1 +
1

1 + n
)∥yn − yn−1∥22 + (λ1λS1

+ λ1λS2λDF
(1 +

1

1 + n
))∥xn − xn−1 + λ1(S(xn, vn)− S(xn−1, vn−1))∥21,

form which we conclude that

∥xn − xn−1 + λ1(S(xn, vn)− S(xn−1, vn−1))∥21

≤ 1 + λ1λS1

1− λ1(λS1
+ λS2

λDF
(1 + 1

1+n ))
∥xn − xn−1∥21

+
λ1λS2λDF

(1 + 1
1+n )

1− λ1(λS1 + λS2λDF
(1 + 1

1+n ))
∥yn − yn−1∥22

= θn1 ∥xn − xn−1∥21 + θn2 ∥yn − yn−1∥22
≤ θn1 ∥xn − xn−1∥21 + 2

√
θn1 θ

n
2 ∥xn − xn−1∥1∥yn − yn−1∥2

+ θn2 ∥yn − yn−1∥22
= (

√
θn1 ∥xn − xn−1∥1 +

√
θn2 ∥yn − yn−1∥2)2,

(3.8)

where for each n ∈ N,

θn1 =
1 + λ1λS1

1− λ1(λS1
+ λS2

λDF
(1 + 1

1+n ))

and

θn2 =
λ1λS2λDF

(1 + 1
1+n )

1− λ1(λS1
+ λS2

λDF
(1 + 1

1+n ))
.

Making use of (3.8), we deduce that

∥xn − xn−1 + λ1(S(xn, vn)− S(xn−1, vn−1))∥1
≤

√
θn1 ∥xn − xn−1∥1 +

√
θn2 ∥yn − yn−1∥2.

(3.9)
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Substituting (3.7) and (3.9) into (3.6), it follows that

∥z′n+1 − z′n∥1 ≤ (K̂1 +
√

θn1 )∥xn − xn−1∥1 +
√
θn2 ∥yn − yn−1∥2.(3.10)

Following the same arguments, taking into consideration the facts that the
mapping P2 is r2-Lipschitz continuous and ς2-generalized pseudocontractive,
T is λT1

-Lipschitz continuous and λT2
-Lipschitz continuous in the first and

second arguments, respectively, and E is λDE
-D1-Lipschitz continuous, and

using Lemma 3.3 and (3.4), we can show that

∥z′′n+1 − z′′n∥2 ≤
√
θn3 ∥xn − xn−1∥1 + (K̂2 +

√
θn4 )∥yn − xn−1∥2,(3.11)

where for each n ∈ N,

K̂2 =

√
1 + 2ς2 + 3r2

1− r2
, θn3 =

λ2λT1λDE
(1 + 1

1+n )

1− λn
2 (λT2 + λT1λDE

(1 + 1
1+n ))

,

θn4 =
1 + λ2λT2

1− λn
2 (λT2 + λT1λDE

(1 + 1
1+n ))

.

Let us now define a norm ∥ · ∥∗ on X1 ×X2 by

∥(x, y)∥∗ = ∥x∥1 + ∥y∥2, ∀(x, y) ∈ X1 ×X2.

It can be easily seen that (X1 ×X2, ∥ · ∥∗) is a Banach space. Then, employing
(3.10) and (3.11), for each n ∈ N, we obtain

∥(z′n+1, z
′′
n+1)− (z′n, z

′′
n)∥∗ = ∥z′n+1 − z′n∥1 + ∥z′′n+1 − z′′n∥2

≤ (K̂1 +
√
θn1 +

√
θn3 )∥xn − xn−1∥1

+ (K̂2 +
√
θn2 +

√
θn4 )∥yn − yn−1∥2.

(3.12)

From (3.4) and Theorem 2.2, it follows that for each n ∈ N,

∥xn − xn−1∥1 = ∥RP1

λ1,M̂1
(z′n)−RP1

λ1,M̂1
(z′n−1)∥1

≤ 1

λ1ϱ1 + ζ1
∥z′n − z′n−1∥1 = L1∥z′n − z′n−1∥1,

(3.13)

where L1 = 1
λ1ϱ1+ζ1

. By an argument analogous to the previous one, applying

(3.4) and utilizing Theorem 2.2, for each n ∈ N, we deduce that

∥yn − yn−1∥2 ≤ L2∥z′′n − z′′n−1∥2,(3.14)

where L2 = 1
λ2ϱ2+ζ2

. Combining (3.12)–(3.14), we yield

∥(z′n+1, z
′′
n+1)− (z′n, z

′′
n)∥∗ ≤ L1(K̂1 +

√
θn1 +

√
θn3 )∥z′n − z′n−1∥1

+ L2(K̂2 +
√
θn2 +

√
θn4 )∥z′′n − z′′n−1∥2

≤ ϑn(∥z′n − z′n−1∥1 + ∥z′′n − z′′n−1∥2)
= ϑn∥(z′n, z′′n)− (z′n−1, z

′′
n−1)∥∗,

(3.15)
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where for each n ∈ N,

ϑn = max{L1(K̂1 +
√
θn1 +

√
θn3 ), L

n
2 (K̂2 +

√
θn2 +

√
θn4 )}.

The fact that for each i ∈ {1, 2, 3, 4}, θni → θi, where

θ1 =
1 + λ1λS1

1− λ1(λS1 + λS2λDF
)
, θ2 =

λ1λS2
λDF

1− λ1(λS1 + λS2λDF
)
,

θ3 =
λ2λT1

λDE

1− λ2(λT1
λDE

+ λT2
)
, θ4 =

1 + λ2λT2

1− λ2(λT1
λDE

+ λT2
)
,

implies that ϑn → ϑ as n → ∞, where

ϑ = max{L1(K̂1 +
√
θ1 +

√
θ3), L2(K̂2 +

√
θ2 +

√
θ4)}.

Evidently, (3.5) guarantees that ϑ ∈ (0, 1). Therefore, there exist n0 ∈ N and

ϑ̂ ∈ (ϑ, 1) such that ϑn ≤ ϑ̂ for all n ≥ n0. Hence, for all n > n0, by (3.15), we
get

∥(z′n+1, z
′′
n+1)− (z′n, z

′′
n)∥∗

≤ ϑn∥(z′n, z′′n)− (z′n−1, z
′′
n−1)∥∗

≤ ϑ̂∥(z′n, z′′n)− (z′n−1, z
′′
n−1)∥∗

≤ ϑ̂[ϑ̂∥(z′n−1, z
′′
n−1)− (z′n−2, z

′′
n−2)∥∗]

= ϑ̂2∥(z′n−1, z
′′
n−1)− (z′n−2, z

′′
n−2)∥∗

≤ · · · ≤ ϑ̂n−n0∥(z′n0+1, z
′′
n0+1)− (z′n0

, z′′n0
)∥∗.

(3.16)

Making use of (3.16), it follows that for any m ≥ n > n0,

∥(z′m, z′′m)− (z′n, z
′′
n)∥∗ ≤

m−1∑
k=n

∥(z′k+1, z
′′
k+1)− (z′k, z

′′
k )∥∗

≤
m−1∑
k=n

ϑ̂k−n0∥(z′n0+1, z
′′
n0+1)− (z′n0

, z′′n0
)∥∗.

(3.17)

Taking into account that ϑ̂ ∈ (0, 1), it follows that the right-hand side of (3.17)
tends to zero, as n → ∞, that is, ∥(z′m, z′′m) − (z′n, z

′′
n)∥∗ → 0 as n → ∞,

consequently, {(z′n, z′′n)}∞n=0 is a Cauchy sequence in X1 ×X2. In view of the
completeness of X1 × X2, (z

′
n, z

′′
n) → (z′, z′′) for some (z′, z′′) ∈ X1 × X2 as

n → ∞. The two inequalities (3.13) and (3.14) imply that xn → x and yn → y
as n → ∞. Then, by using (3.4) and thanks to the fact that the mappings
E and F are λDE

-D1-Lipschitz and λDF
-D2-Lipschitz continuous, respectively,

we observe that {un}∞n=0 and {vn}∞n=0 are also Cauchy sequences in X1 and
X2, respectively. Accordingly, there are u ∈ X1 and v ∈ X2 such that un → u
and vn → v, as n → ∞. Since un ∈ E(xn) for each n ≥ 0, we have

d1(u,E(x)) = inf{∥u− q∥1 : q ∈ E(x)}
≤ ∥u− un∥1 + d1(un, E(x))
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≤ ∥u− un∥1 +D1(E(xn), E(x))

≤ ∥u− un∥1 + λDE
∥xn − x∥1.

Obviously, the right-hand side of the last inequality approaches zero, as n → ∞,
and so in virtue of the fact that E(x) is closed, it follows that u ∈ E(x). In a
similar fashion to the preceding analysis, one can show that v ∈ F (y). Since
xn → x, yn → y, un → u and vn → v as n → ∞, in the light of the Lipschitz
continuity of S and T in both the arguments, with the help of (3.4), we deduce
that z′n → z′ = P1(x) − λ1S(x, v) and z′′n → z′′ = P2(y) − λ2T (u, y). At the
same time, by using Theorem 2.2, for each n ≥ 0, we yield

∥RP1

λ1,M̂1
(z′n)−RP1

λ1,M̂1
(z′)∥1 ≤ 1

λ1ϱ1 + ζ1
∥z′n − z′∥1.(3.18)

Now, taking into account that z′n → z′ as n → ∞, from (3.18) we deduce that

∥RP1

λ1,M̂1
(z′n)−RP1

λ1,M̂1
(z′)∥1 → 0 as n → ∞,

and so

RP1

λ1,M̂1
(z′n) → RP1

λ1,M̂1
(z′) as n → ∞.

Following the same argument, we can prove that RP2

λ2,M̂2
(z′′n) → RP2

λ2,M̂2
(z′′), as

n → ∞. Now, (3.4) implies that x = RP1

λ1,M̂1
(z′) and y = RP2

λ2,M̂2
(z′′). In the

light of the above-mentioned discussion, (x, y, u, v, z′, z′′) ∈ X1 ×X2 ×E(x)×
F (y)×X1×X2 is a solution of the SGMRE (3.1). This completes the proof. □

It should be pointed out that the SGMRE (3.1) can also be written as
follows: {

z′ = P1(x)− S(x, v) + (I1 − λ−1
1 )JP1

λ1,M̂1
(z′),

z′′ = P2(y)− T (u, y) + (I2 − λ−1
2 )JP2

λ2,M̂2
(z′′),

(3.19)

where for i = 1, 2, Ii is the identity mapping on Xi.
The fixed point formulation (3.19) enables also us to suggest the following

iterative algorithm for approximating a solution of the SGMRE (3.1).

Algorithm 3.2. Suppose that Xi, Pi, M̂i (i = 1, 2), S, T , E and F are
the same as in the SGMRE (3.1). For any given (x0, y0), (z

′
0, z

′′
0 ) ∈ X1 ×X2,

u0 ∈ E(x0) and v0 ∈ F (y0), compute the iterative sequences {xn}∞n=0, {yn}∞n=0,
{un}∞n=0, {vn}∞n=0, {z′n}∞n=0 and {z′′n}∞n=0 by the following iterative schemes:

xn = RP1

λ1,M̂1
(z′n),

yn = RP2

λ2,M̂2
(z′′n),

un ∈ E(xn); ∥un+1 − un∥1 ≤ (1 + 1
1+n )D1(E(xn+1), E(xn)),

vn ∈ F (yn); ∥vn+1 − vn∥2 ≤ (1 + 1
1+n )D2(F (yn+1), F (yn)),

z′n+1 = P1(xn)− S(xn, vn) + (I1 − λ−1
1 )JP1

λ1,M̂1
(z′n),

z′′n+1 = P2(yn)− T (un, yn) + (I2 − λ−1
2 )JP2

λ2,M̂2
(z′′n),
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where n = 0, 1, 2, . . . ; λi > 0 (i = 1, 2) are positive real constants, and for
i = 1, 2, Di is the Hausdorff metric on CB(Xi).

It is worth mentioning that by the argument similar to that of Theorem 3.1,
one can study the convergence analysis of the iterative sequences generated by
Algorithm 3.2.

4. Some comments on H(·, ·)-co-accretive mappings

This section deals with the investigation and analysis of the H(·, ·)-co-
accretive mapping introduced and studied in [1]. By pointing out some impor-
tant remarks on H(·, ·)-co-accretive mapping, we show that the main results in
[1] can be easily deduced by using the assertions presented in Sections 2 and 3.

Definition 4.1 ([1, Definition 2.2]). Let H : X ×X → X, A,B : X → X be
the mappings and F : X → 2X

∗
be the normalized duality mapping. Then

(i) H(A, ·) is said to be cocoercive (or µ-cocoercive) with respect to A, if
there exists a constant µ > 0 such that

⟨H(Ax, u)−H(Ay, u), j(x− y)⟩ ≥ µ∥Ax−Ay∥2,
∀x, y, u ∈ X, j(x− y) ∈ F(x− y);

(ii) H(·, B) is said to be relaxed-cocoercive (or γ-relaxed cocoercive) with
respect to B, if there exists a constant γ > 0 such that

⟨H(u,Bx)−H(u,By), j(x− y)⟩ ≥ −γ∥Bx−By∥2,
∀x, y, u ∈ X, j(x− y) ∈ F(x− y);

(iii) H(A,B) is said to be symmetric cocoercive (or µγ-symmetric cocoer-
cive) with respect to A and B, if H(A, ·) is µ-cocoercive with respect
to A and H(·, B) is γ-relaxed cocoercive with respect to B;

(iv) H(A,B) is said to be mixed Lipschitz continuous with respect to A
and B, if there exists a constant r > 0 such that

∥H(Ax,Bx)−H(Ay,By)∥ ≤ r∥x− y∥, ∀x, y ∈ X.

Proposition 4.1. Let X be a real Banach space and F be the normalized
duality mapping from X into X∗. Assume that A,B : X → X and H :
X × X → X are the mappings such that A is η-expansive, B is σ-Lipschitz
continuous and η > σ. Suppose further that the mapping H(A,B) is µγ-
symmetric cocoercive with respect to mappings A and B and P : X → X is a
mapping defined by P (x) := H(Ax,Bx) for all x ∈ X. Then

(i) If µη2 = γσ2, then P is an accretive mapping;
(ii) If µη2 > γσ2, then P is a (µη2 − γσ2)-strongly accretive mapping;
(iii) If µη2 < γσ2, then P is a (µη2 − γσ2)-relaxed accretive mapping.
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Proof. In the light of the assumptions, for any x, y ∈ X and for all j(x− y) ∈
F(x− y), we have

⟨P (x)− P (y), j(x− y)⟩ = ⟨H(Ax,Bx)−H(Ay,By), j(x− y)⟩
= ⟨H(Ax,Bx)−H(Ay,Bx), j(x− y)⟩
+ ⟨H(Ay,Bx)−H(Ay,By), j(x− y)⟩

≥ µ∥Ax−Ay∥2 − γ∥Bx−By∥2

≥ µη2∥x− y∥2 − γσ2∥x− y∥2

= (µη2 − γσ2)∥x− y∥2.

Now, the assertions (i)–(iii) follow respectively from parts (i), (ii) and (iv) of
Definition 2.1. □

Thanks to Proposition 4.1, every symmetric cocoercive bifunction H : X ×
X → X with respect to mappings A,B : X → X, under the conditions im-
posed on A and B mentioned in it, is actually a univariate accretive, strongly
accretive, or relaxed accretive mapping and is not a new one. In fact, the
notion µγ-symmetric cocoercivity of bifunction H with respect to mappings
A and B presented in Definition 4.1(iii), where A and B are η-expansive and
σ-Lipschitz continuous, respectively, is exactly the same concept of accretivity,
k = (µη2−γσ2)-strong accretivity, or ϱ = (µη2−γσ2)-relaxed accretivity of the
univariate mapping P := H(A,B) given in parts (i), (iii) and (iv) of Definition
2.1.

Definition 4.2 ([1, Definition 2.4]). Let M : X ×X → 2X be a multi-valued
mapping, f, g : X → X be the mappings and F : X → 2X

∗
be the normalized

duality mapping. Then

(i) M(f, ·) is said to be α-strongly accretive with respect to f , if there
exists a constant α > 0 such that

⟨u− v, j(x− y)⟩ ≥ α∥x− y∥2, ∀x, y, w ∈ X,

u ∈ M(f(x), w), v ∈ M(f(y), w), j(x− y) ∈ F(x− y);

(ii) M(·, g) is said to be β-relaxed accretive with respect to g, if there exists
a constant β > 0 such that

⟨u− v, j(x− y)⟩ ≥ −β∥x− y∥2, ∀x, y, w ∈ X,

u ∈ M(w, g(x)), v ∈ M(w, g(y)), j(x− y) ∈ F(x− y);

(iii) M(·, ·) is said to be symmetric (or αβ-symmetric) accretive with respect
to f and g, if M(f, ·) is α-strongly accretive with respect to f and
M(·, g) is β-relaxed accretive with respect to g.

Proposition 4.2. Let X be a real Banach space and F be the normalized
duality mapping from X into X∗. Suppose that f, g : X → X and M : X ×
X → 2X are the mappings, and let the mapping M̂ : X → 2X be defined by
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M̂(x) := M(f(x), g(x)) for all x ∈ X. Moreover, let M(·, ·) be αβ-symmetric
accretive with respect to f and g. Then,

(i) If α = β, then M̂ is accretive;

(ii) If α > β, then M̂ is (α− β)-strongly accretive;

(iii) If α < β, then M̂ is (α− β)-relaxed accretive.

Proof. In virtue of the fact that M(·, ·) is αβ-symmetric accretive with respect

to f and g, for any x, y ∈ X, u ∈ M̂(x), v ∈ M̂(y) and j(x− y) ∈ F(x− y), we
yield

⟨u− v, j(x− y)⟩ = ⟨u− w + w − v, j(x− y)⟩
= ⟨u− w, j(x− y)⟩+ ⟨w − v, j(x− y)⟩
≥ α∥x− y∥2 − β∥x− y∥2

= (α− β)∥x− y∥2.
In the light of the last inequality and invoking Definition 2.2(i)–(iii), the state-
ments follow immediately. □

Based on Proposition 4.2, the concept αβ-symmetric accretivity of M :
X×X → 2X with respect to mappings f, g : X → X given in Definition 4.2(iii)
is actually the same notion accretivity, r = (α−β)-strong accretiviy, or ξ = (α−
β)-relaxed accretivity of the univariate multi-valued mapping M̂ := M(f, g) :
X → 2X presented in Definition 2.2(i)–(iii). In other words, every symmetric
accretive mapping is exactly an accretive, strongly accretive or relaxed accretive
mapping, and is not a new one.

Ahmad and Akram [1] considered and studied a class of accretive mappings
the so-called H(·, ·)-co-accretive mappings as a generalization of P -accretive
mappings as follows.

Definition 4.3 ([1, Definition 2.7]). Let A,B, f, g : X → X and H : X×X →
X be the mappings. A multi-valued mapping M : X × X → 2X is said to
be H(·, ·)-co-accretive with respect to A,B, f and g, if H(A,B) is symmetric
cocoercive with respect to A and B, M(f, g) is symmetric accretive with respect
to f and g and (H(A,B) + λM(f, g))(X) = X for every real constant λ > 0.

The next assertion tells us that the class of H(·, ·)-co-accretive mappings
coincides exactly with one of the classes of P -accretive mappings, or (α − β)-
strongly P -accretive mappings, or P -maximal (α − β)-relaxed accretive map-
pings and in contrary of the claim in [1] is not a new one.

Proposition 4.3. Suppose that X is a real Banach space and F is the nor-
malized duality mapping from X into X∗. Let A,B, f, g : X → X and H :
X × X → X be the mappings and let M : X × X → 2X be an H(·, ·)-co-
accretive mapping with respect to A,B, f and g with constants µ, γ, α, β > 0.

Furthermore, let the mappings P : X → X and M̂ : X → 2X be defined by

P (x) := H(Ax,Bx) and M̂(x) := M(f(x), g(x)) for all x ∈ X, respectively.
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(i) If α = β, then M̂ is a P -accretive mapping;

(ii) If α > β, then M̂ is an (α− β)-strongly P -accretive mapping;

(iii) If α < β, then M̂ is a P -maximal (α− β)-relaxed accretive mapping.

Proof. Taking into account thatM isH(·, ·)-co-accretive with respect to A,B, f
and g, accordance with Definition 4.3, M(f, g) is αβ-symmetric accretive with
respect to f and g with constants α, β > 0, respectively, and (H(A,B) +

λM(f, g))(X) = X for every real constant λ > 0. Utilizing Proposition 4.2, M̂
is accretive (resp. (α−β)-strongly accretive, (α−β)-relaxed accretive) if α = β
(resp. α > β, α < β). At the same time, thanks to the assumptions, for every

real constant λ > 0, we have (P + λM̂)(X) = (H(A,B) + λM(f, g))(X) = X.
Now, the conclusions (i)–(iii) follow immediately. □

Note. In the rest of the paper, we say thatM is anH(·, ·)-co-accretive mapping
with respect to A,B, f and g, means that H(A,B) is µγ-symmetric cocoercive
with respect to A and B, and M(f, g) is αβ-symmetric accretive with respect
to f and g, where µ > γ and α > β.

In order to define the resolvent operator associated with an H(·, ·)-co-accret-
ive mapping, the authors [1] presented the following assertion in which the
required conditions for the operator (H(A,B)+λM(f, g))−1 to be single-valued
for every real constant λ > 0, are provided.

Lemma 4.1 ([1, Theorem 2.1]). Let X be a real Banach space and let A, B,
f , g : X → X and H : X ×X → X be the mappings. Let M : X ×X → 2X

be an H(·, ·)-co-accretive mapping with respect to A,B, f and g. Let A be η-
expansive and B be σ-Lipschitz continuous such that η > σ. Then the mapping
(H(A,B) + λM(f, g))−1 is single-valued for every real constant λ > 0.

Proof. Let us define the mappings P : X → X and M̂ : X → 2X as P (x) :=

H(Ax,Bx) and M̂(x) := M(f(x), g(x)) for all x ∈ X. Since α > β, Proposition

4.3(ii) implies that M̂ is an (α − β)-strongly P -accretive mapping. In the
meanwhile, taking into consideration the facts that H(A,B) is µγ-symmetric
cocoercive with respect to mappings A and B, and µ > γ and η > σ, thanks to
Proposition 4.1(ii) it follows that P is a (µη2−γσ2)-strongly accretive mapping.

Now, according to Corollary 2.1, the mapping (P + λM̂)−1 = (H(A,B) +
λM(f, g))−1 : X → X is single-valued for every real constant λ > 0. This gives
the desired result. □

Remark 4.1. Due to the proof of [1, Theorem 2.1] is similar to that of Theorem
3.8 in [4], the authors [1] deleted its proof. However, by a careful reading the
proof of [4, Theorem 3.8], we found that there is a small mistake in the contexts
of [1, Theorem 2.1] and [4, Theorem 3.8]. In fact, in the light of the proof of
[4, Theorem 3.8], in the contexts of [1, Theorem 2.1] and [4, Theorem 3.8],
the two constants η and σ in addition to being positive must be satisfied the
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condition η > σ, as we have added the aforesaid condition to the context of
Lemma 4.1.

By virtue of Lemma 4.1 (that is, [1, Theorem 2.1]), Ahmad and Akram [1]

defined the resolvent operator R
H(·,·)
λ,M(·,·) associated with an H(·, ·)-co-accretive

mapping M : X ×X → 2X and an arbitrary real constant λ > 0 as follows.

Definition 4.4 ([1, Definition 2.8]). Let A,B, f, g : X → X and H : X×X →
X be the mappings, and let M : X × X → 2X be an H(·, ·)-co-accretive
mapping with respect to A,B, f and g. Suppose further that A is η-expansive
and B is σ-Lipschitz continuous such that η > σ. The resolvent operator

R
H(·,·)
λ,M(·,·) : X → X is defined by

R
H(·,·)
λ,M(·,·)(x) = (H(A,B) + λM(f, g))−1(x), ∀x ∈ X and λ > 0.

Note, in particular, that the authors [1] defined the resolvent operator R
H(·,·)
λ,M(·,·)

associated with an H(·, ·)-co-accretive mapping M : X ×X → 2X and an ar-
bitrary real constant λ > 0 based on Lemma 4.1 (that is, [1, Theorem 2.1]).
According to Lemma 4.1, the two mappings A and B must be η-expansive and
σ-Lipschitz continuous, respectively. At the same time, as we have pointed out
in Remark 4.1, the two constants η and σ in addition to being positive must be
satisfied the condition η > σ. In the light of the above-mentioned arguments,
there is a small mistake in the context of Definition 2.8 of [1]. In fact, the condi-
tions η-expansivity of A and σ-Lipschitz continuity of B such that η > σ, must
be added to the context of [1, Definition 2.8], as we have done in the context of
Definition 4.4. On the other hand, by defining the two mappings P : X → X

and M̂ : X → 2X as P (x) := H(Ax,Bx) and M̂(x) := M(f(x), g(x)) for all

x ∈ X, considering the facts that M̂ is an H(·, ·)-co-accretive mapping with
respect to A,B, f and g with constants µ, γ, α, β > 0, and α > β, Proposi-

tion 4.3(ii) implies that M̂ is an (α − β)-strongly P -accretive mapping. In
the meanwhile, relying on Note 4, H(A,B) is µγ-symmetric cocoercive with
respect to A and B. Since µ > γ and η > σ, according to Proposition 4.1(ii), P
is a (µη2−γσ2)-strongly accretive mapping. Then, invoking Definition 2.4, for

every real constant λ > 0, the resolvent operator RP
λ,M̂

= R
H(·,·)
λ,M(·,·) : X → X as-

sociated with an (α−β)-strongly P -accretive mapping M̂ : X → 2X is defined
by

RP
λ,M̂

(x) = R
H(·,·)
λ,M(·,·)(x) = (P + λM̂)−1(x)

= (H(A,B) + λM(f, g))−1(x), ∀x ∈ X.

In fact, the notion of the resolvent operator R
H(·,·)
λ,M(·,·) associated with an

arbitrary real constant λ > 0 and an H(·, ·)-co-accretive mapping M : X×X →
2X presented in Definition 4.4, is actually the same concept of the resolvent
operator RP

λ,M̂
associated with (α− β)-strongly P = H(·, ·)-accretive mapping
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M̂ = M(·, ·) and real constant λ > 0, given in Definition 2.4, and is not a new
one.

Section 2 in [1] is closed with an assertion on the Lipschitz continuity of the

resolvent operator R
H(·,·)
λ,M(·,·) along with an estimate of its Lipschitz constant as

follows.

Lemma 4.2 ([1, Theorem 2.2]). Let A,B, f, g : X → X and H : X×X → X be
the mappings. Suppose that M : X×X → 2X is an H(·, ·)-co-accretive mapping
with respect to A,B, f and g with constants µ, γ, α and β, respectively. Let A be
η-expansive and B be σ-Lipschitz continuous such that α > β, µ > γ and η > σ.

Then, for every real constant λ > 0, the resolvent operator R
H(·,·)
λ,M(·,·) : X → X

is Lipschitz continuous with constant L = 1
λ(α−β)+µη2−γσ2 , i.e.,

∥RH(·,·)
λ,M(·,·)(x)−R

H(·,·)
λ,M(·,·)(y)∥ ≤ L∥x− y∥, ∀x, y ∈ X.

Proof. Define the two mappings P : X → X and M̂ : X → 2X by P (x) :=

H(Ax,Bx) and M̂(x) = M(f(x), g(x)) for all x ∈ X, respectively. Since M
is an H(·, ·)-co-accretive mapping with respect to mappings A,B, f and g, in
view of Note 4, H(A,B) is a µγ-symmetric cocoercive mapping with respect
to A and B, and M(f, g) is an αβ-symmetric accretive mapping with respect
to f and g such that µ > γ and α > β. Owing to these facts and in the
light of Propositions 4.1(ii) and 4.3(ii), with the help of the fact that η > σ it

follows that P is a (µη2−γσ2)-strongly accretive mapping and M̂ is an (α−β)-
strongly P -accretive mapping. Then, taking ζ = µη2 − γσ2 and ϱ = α − β,
Theorem 2.2 implies that for any real constant λ > 0, the resolvent operator

RP
λ,M̂

= R
H(·,·)
λ,M(·,·) : X → X is 1

λϱ+ζ = 1
λ(α−β)+µη2−γσ2 -Lipschitz continuous,

i.e., for any x, y ∈ X,

∥RP
λ,M̂

(x)−RP
λ,M̂

(y)∥ = ∥RH(·,·)
λ,M(·,·)(x)−R

H(·,·)
λ,M(·,·)(y)∥

≤ 1

λϱ+ ζ
∥x− y∥

=
1

λ(α− β) + µη2 − γσ2
∥x− y∥.

This completes the proof. □

Let for each i ∈ {1, 2}, Xi be a real Banach space, Ai, Bi, fi, gi : Xi → Xi,
Hi : Xi × Xi → Xi, S : X1 × X2 → X1 and T : X1 × X2 → X2 be the
mappings, and let E : X1 → 2X1 and F : X2 → 2X2 be multi-valued mappings.
Suppose further that for each i ∈ {1, 2}, Mi : Xi ×Xi → 2Xi is an Hi(Ai, Bi)-
co-accretive mapping with respect to Ai, Bi, fi and gi. Recently, for given
two arbitrary real constants λ1, λ2 > 0, Ahmad and Akram [1] considered
and studied the problem of finding (x, y) ∈ X1 × X2, u ∈ E(x), v ∈ F (y),
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(z′, z′′) ∈ X1 ×X2 such that{
S(x, v) + λ−1

1 J
H1(·,·)
λ1,M1(·,·)(z

′) = 0,

T (u, y) + λ−1
2 J

H2(·,·)
λ2,M2(·,·)(z

′′) = 0,
(4.1)

where for each i∈{1, 2}, JHi(·,·)
λi,Mi(·,·)=Ii−Hi[Ai(R

Hi(·,·)
λi,Mi(·,·)(·)), Bi(R

Hi(·,·)
λi,Mi(·,·)(·))],

R
Hi(·,·)
λi,Mi(·,·) is the resolvent operator associated with the Hi(Ai, Bi)-co-accretive

mapping Mi. Corresponding to the system of generalized resolvent equations
(4.1), they considered and studied a system of variational inclusions as follows:
find (x, y) ∈ X1 ×X2, u ∈ E(x) and v ∈ F (y) such that{

0 ∈ S(x, v) +M1(f1(x), g1(x)),
0 ∈ T (u, y) +M2(f2(y), g2(y)).

(4.2)

By providing an alternative equivalence formulation in which the equiva-
lence between the system (4.2) and a fixed point problem is established, they
presented a characterization of a solution of the system (4.2) as follows.

Lemma 4.3 ([1, Lemma 3.1]). Let Xi, Ai, Bi, fi, gi, Hi, Mi (i = 1, 2), S,
T , E and F be the same as in the system (4.1). Then (x, y, u, v) ∈ X1 ×X2 ×
E(x) × F (y) is a solution of the system of variational inclusions (4.2) if and
only if (x, y, u, v) satisfies{

x = R
H1(·,·)
λ1,M1(·,·)[H1(A1(x), B1(x))− λ1S(x, v)],

y = R
H2(·,·)
λ2,M2(·,·)[H2(A2(y), B2(y))− λ2T (u, y)],

where λ1, λ2 > 0 are two arbitrary real constants.

Proof. Let us define for each i ∈ {1, 2}, the mappings Pi : Xi → Xi and

M̂i : Xi → 2Xi by Pi(x) = Hi(Ai(xi), Bi(xi)) and M̂i(xi) = Mi(fi(xi), gi(xi))
for all xi ∈ Xi, respectively. Taking into account that for each i ∈ {1, 2}, Mi

is an Hi(·, ·)-co-accretive mapping with respect to mappings Ai, Bi, fi and gi,
according to Note (4.1), for each i ∈ {1, 2}, Hi(Ai, Bi) is a µiγi-symmetric coco-
ercive mapping with respect to Ai and Bi, and Mi(fi, gi) is an αiβi-symmetric
accretive mapping with respect to fi and gi such that µi > γi and αi > βi.
In the light of these facts, from Propositions 4.1(ii) and 4.3(ii) and the fact
that ηi > σi, it follows that for each i ∈ {1, 2}, Pi is a (µiη

2
i − γiσ

2
i )-strongly

accretive mapping and M̂i is an (αi−βi)-strongly Pi-accretive mapping. Then,
invoking Lemma 3.1, (x, y, u, v) ∈ X1 ×X2 × E(x)× F (y) is a solution of the
system {

0 ∈ S(x, v) + M̂1(x)

0 ∈ T (u, y) + M̂2(y)
=

{
0 ∈ S(x, v) +M1(f1(x), g1(x)),
0 ∈ T (u, y) +M2(f2(y), g2(y)),

if and only if {
x = RP1

λ1,M̂1
[P1(x)− λ1S(x, v)]

y = RP2

λ2,M̂2
[P2(y)− λ2T (u, y)]
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=

{
x = R

H1(·,·)
λ1,M1(·,·)[H1(A1(x), B1(x))− λ1S(x, v)],

y = R
H2(·,·)
λ2,M2(·,·)[H2(A2(y), B2(y))− λ2T (u, y)],

where λi > 0 (i = 1, 2) are real constants. This ends the proof of the lemma. □

It is worthwhile to stress that in virtue of the above-mentioned discussion,
in contrary of the claim in [1], they, instead of presentation a characterization
of a solution for the system (4.2) involving Hi(·, ·)-co-accretive mappings Mi

(i = 1, 2), gave actually a characterization of a solution of the system (3.2)

involving Pi-accretive mappings M̂i (i = 1, 2).
Employing Lemma 4.3 (that is, [1, Lemma 3.1]), they proved the equivalence

between the two systems (4.1) and (4.2).

Lemma 4.4 ([1, Proposition 3.1]). Let Xi, Ai, Bi, fi, gi, Hi, Mi (i = 1, 2), S,
T , E and F be the same as in the system (4.1). Then the system of variational
inclusions (4.2) has a solution (x, y, u, v) with (x, y) ∈ X1 ×X2, u ∈ E(x) and
v ∈ F (y) if and only if the system of generalized resolvent equations (4.1) has
a solution (z′, z′′, x, y, u, v) with (x, y) ∈ X1×X2, u ∈ E(x), v ∈ F (y), z′1 ∈ X1

and z′′ ∈ X2, where
x = R

H1(·,·)
λ1,M1(·,·)(z

′),

y = R
H2(·,·)
λ2,M2(·,·)(z

′′),

z′ = H1(A1(x), B1(x))− λ1S(x, v),
z′′ = H2(A2(y), B2(y))− λ2T (u, y).

Proof. Let us define the mappings Pi : Xi → Xi and M̂i : Xi → 2Xi for i = 1, 2,
the same as in the proof of Lemma 4.3. By a same argument as the proof of
Lemma 4.3, it follows that for each i ∈ {1, 2}, Pi is a (µiη

2
i − γiσ

2
i )-strongly

accretive mapping and M̂i is an (αi−βi)-strongly Pi-accretive mapping. Then,
we observe that all the conditions of Proposition 3.1 hold and so Proposition
3.1 implies that (x, y, u, v) with (x, y) ∈ X1 ×X2, u ∈ E(x) and v ∈ F (y) is a
solution of the system{

0 ∈ S(x, v) + M̂1(x)

0 ∈ T (u, y) + M̂2(y)
=

{
0 ∈ S(x, v) +M1(f1(x), g1(x)),
0 ∈ T (u, y) +M2(f2(y), g2(y)),

if and only if (z′, z′′, x, y, u, v), where (z′, z′′) ∈ X1 × X2 is a solution of the
system{

S(x, v) + λ−1
1 JP1

λ1,M̂1
(z′) = 0

T (u, y) + λ−1
2 JP2

λ2,M̂2
(z′′) = 0

=

{
S(x, v) + λ−1

1 J
H1(·,·)
λ1,M1(·,·)(z

′) = 0,

T (u, y) + λ−1
2 J

H2(·,·)
λ2,M2(·,·)(z

′′) = 0,
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satisfying
x = RP1

λ1,M̂1
(z′) = R

H1(·,·)
λ1,M1(·,·)(z

′),

y = RP2

λ2,M̂2
(z′′) = R

H2(·,·)
λ2,M2(·,·)(z

′′),

z′ = P1(x)− λ1S(x, v) = H1(A1(x), B1(x))− λ1S(x, v),
z′′ = P2(y)− λ2T (u, y) = H2(A2(y), B2(y))− λ2T (u, y),

where λi > 0 and RPi

λi,M̂i
= R

Hi(·,·)
λi,Mi(·,·) (i = 1, 2) are the same as in the system

of generalized resolvent equations (4.1). This gives the desired result. □

In order to approximate a solution of the system (4.1), the authors proposed
an iterative algorithm based on Lemma 4.4 (that is, [1, Proposition 3.1]) as
follows.

Algorithm 4.1 ([1, Algorithm 3.1]). Suppose that Xi, Ai, Bi, fi, gi, Hi, Mi

(i = 1, 2), S, T , E and F are the same as in the system (4.1). For any given
(x0, y0) ∈ X1 × X2, u0 ∈ E(x0), v0 ∈ F (y0), z

′
0 ∈ X1 and z′′0 ∈ X2, compute

the sequences {z′n}∞n=0, {z′′n}∞n=0, {xn}∞n=0, {yn}∞n=0, {un}∞n=0 and {vn}∞n=0 by
the following iterative schemes:

xn = R
H1(·,·)
λ1,M1(·,·)(z

′
n),(4.3)

yn = R
H2(·,·)
λ2,M2(·,·)(z

′′
n),(4.4)

un ∈ E(xn); ∥un+1 − un∥ ≤ D(E(xn+1), E(xn)),(4.5)

vn ∈ F (yn); ∥vn+1 − vn∥ ≤ D(F (yn+1), F (yn)),(4.6)

z′n+1 = H1(A1(xn), B1(xn))− λ1S(xn, vn),(4.7)

z′′n+1 = H2(A2(yn), B2(yn))− λ2T (un, yn),(4.8)

where n = 0, 1, 2, . . . and λ1, λ2 > 0 are two real constants.

By a careful reading Algorithm 4.1, we found that the sequences {xn}∞n=0,
{yn}∞n=0, {un}∞n=0, {vn}∞n=0, {z′n}∞n=0 and {z′′n}∞n=0 generated by Algorithm
4.1 are not well defined necessarily. In fact, for any given (x0, y0), (z

′
0, z

′′
0 ) ∈

X1 × X2, u0 ∈ E(x0) and v0 ∈ F (y0), the authors [1] computed (xn, yn) ∈
X1 × X2 by induction on n using the iterative schemes (4.3) and (4.4), and
then they claimed that one can choose un+1 ∈ F (xn+1) and vn+1 ∈ F (yn+1)
such that the relations ∥un+1 − un∥ ≤ D(E(xn+1), E(xn)) and ∥vn+1 − vn∥ ≤
D(F (yn+1), F (yn)) hold. However, if X is a complete metric space and T :
X → CB(X) is a multi-valued mapping, then Lemma 3.2 tells that for any
ε > 0 and for any given x, y ∈ X and u ∈ T (x), there exists v ∈ T (y) such that
d(u, v) ≤ (1+ ε)D(T (x), T (y)). Whereas, the following example shows that for
any given x, y ∈ X and u ∈ T (x), there may not be a point v ∈ T (y) such that
d(u, v) ≤ D(T (x), T (y)).

Example 4.1. Consider X= l∞(Z)={z = {zn}∞n=−∞| sup
n∈Z

|zn| < ∞, zn ∈ C},

the Banach space consisting of all bounded complex sequences z = {zn}∞n=−∞
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with the supremum norm ∥z∥∞ = sup
n∈Z

|zn|. Any element z = {zn}∞n=−∞ =

{xn + iyn}∞n=−∞ ∈ l∞(Z) can be written as follows:

z =
∑

t∈{±1,±3,... }

[
(. . . , 0, . . . , 0, x2t−1 + iy2t−1, 0, x2t+1 + iy2t+1, 0, . . . )

+ (. . . , 0, . . . , 0, x2t + iy2t, 0, x2t+2 + iy2t+2, 0, . . . )
]

=
∑

t∈{±1,±3,... }

[
y2t−1 + y2t+1 − i(x2t−1 + x2t+1)

2
(. . . , 0, . . . , 0, i2t−1, 0, i2t+1, 0, . . . )

+
y2t−1 − y2t+1 − i(x2t−1 − x2t+1)

2
(. . . , 0, . . . , 0, i2t−1, 0,−i2t+1, 0, . . . )

+
y2t + y2t+2 − i(x2t + x2t+2)

2
(. . . , 0, . . . , 0, i2t, 0, i2t+2, 0, . . . )

+
y2t − y2t+2 − i(x2t − x2t+2)

2
(. . . , 0, . . . , 0, i2t, 0,−i2t+2, 0, . . . )

]
=

∑
t∈{±1,±3,... }

[y2t−1 + y2t+1 − i(x2t−1 + x2t+1)

2
σ2t−1,2t+1

+
y2t−1 − y2t+1 − i(x2t−1 − x2t+1)

2
σ′
2t−1,2t+1

+
y2t + y2t+2 − i(x2t + x2t+2)

2
σ2t,2t+2

+
y2t − y2t+2 − i(x2t − x2t+2)

2
σ′
2t,2t+2

]
,

where for each t ∈ {±1,±3, . . . }, σ2t−1,2t+1 = (. . . , 0, . . . , 0, i2t−1, 0, i2t+1,
0, . . . ), i at the (2t− 1)th and (2t+1)th coordinates, and all other coordinates
are zero, σ′

2t−1,2t+1 = (. . . , 0, . . . , 0, i2t−1, 0, −i2t+1, 0, . . . ), i and −i at the
(2t−1)th and (2t+1)th places, respectively, and 0’s everywhere else, σ2t,2t+2 =
(. . . , 0, . . . , 0, i2t, 0, i2t+2, 0, . . . ), i at the (2t)th and (2t+2)th coordinates, and
all other coordinates are zero, and σ′

2t,2t+2 = (. . . , 0, . . . , 0, i2t, 0,−i2t+2, 0, . . . ),
i and −i in the (2t)th and (2t+2)th positions, respectively, and 0’s elsewhere.
Accordingly, the set

B =
{
σ2t−1,2t+1, σ

′
2t−1,2t+1, σ2t,2t+2, σ

′
2t,2t+2 : t = ±1,±3, . . .

}
spans the Banach space l∞(Z). It can be easily seen that the set B is linearly
independent and so it is a Schauder basis for the Banach space l∞(Z). Let us
define the multi-valued mapping T : X → CB(X) as

T (x) =


{{ γ

n(nβ+1)! (nθ+2)!√
nα!

i}∞n=−∞, σ2t,2t, δ
′
2t,2t+2 :

t = ±1,±3, . . . }, x ̸= σ′
2s,2s+2,

{σ2t−1,2t+1, σ
′
2t−1,2t+1 : t = ±1,±3, . . . }, x = σ′

2s,2s+2,
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where γ ∈ [−1, 0) is an arbitrary but fixed real number, α, β, θ are arbitrary
but fixed even natural numbers, and s ∈ {±1,±3, . . . } is chosen arbitrarily
but fixed. Take σ′

2s,2s+2 ̸= x ∈ X arbitrarily but fixed, y = σ′
2s,2s+2 and

u = { γ

n(nβ+1)! (nθ+2)!√
nα!

i}∞n=−∞. If a = { γ

n(nβ+1)! (nθ+2)!√
nα!

i}∞n=−∞, then taking

into account that γ < 0, for any t ∈ {±1,±3, . . . }, we obtain

d(a, σ2t−1,2t+1)

= ∥{ γ

n(nβ+1)! (nθ+2)!
√
nα!

i}∞n=−∞ − σ2t−1,2t+1∥∞

= sup{| γ

n(nβ+1)! (nθ+2)!
√
nα!

|, | γ

(2t− 1)((2t−1)β+1)! ((2t−1)θ+2)!
√

(2t−1)α!
− 1|,

| γ

(2t+ 1)((2t+1)β+1)! ((2t+1)θ+2)!
√

(2t+1)α!
− 1| : n ∈ Z, n ̸= 2t− 1, 2t+ 1}

=


| γ

(2t−1)((2t−1)β+1)! ((2t−1)θ+2)!
√

(2t−1)α!
− 1|, if t ∈ {2k + 1|k ∈ N ∪ {0}},

| γ

(2t+1)((2t+1)β+1)! ((2t+1)θ+2)!
√

(2t+1)α!
− 1|, if t ∈ {−(2k + 1)|k ∈ N ∪ {0}},

=


1− γ

(2t−1)((2t−1)β+1)! ((2t−1)θ+2)!
√

(2t−1)α!
, if t ∈ {2k + 1|k ∈ N ∪ {0}},

1− γ

(2t+1)((2t+1)β+1)! ((2t+1)θ+2)!
√

(2t+1)α!
, if t ∈ {−(2k + 1)|k ∈ N ∪ {0}},

and

d(a, σ′
2t−1,2t+1)

= ∥{ γ

n(nβ+1)! (nθ+2)!
√
nα!

i}∞n=−∞ − σ′
2t−1,2t+1∥∞

= sup{| γ

n(nβ+1)! (nθ+2)!
√
nα!

|, | γ

(2t− 1)((2t−1)β+1)! ((2t−1)θ+2)!
√

(2t−1)α!
− 1|,

| γ

(2t+ 1)((2t+1)β+1)! ((2t+1)θ+2)!
√

(2t+1)α!
+ 1| : n ∈ Z, n ̸= 2t− 1, 2t+ 1}

= | γ

(2t− 1)((2t−1)β+1)! ((2t−1)θ+2)!
√

(2t−1)α!
− 1|

= 1− γ

(2t− 1)((2t−1)β+1)! ((2t−1)θ+2)!
√

(2t−1)α!
.

The fact that γ ∈ [−1, 0) implies that

d(a, T (y)) = inf
b∈T (y)

d(a, b) = inf
{
1− γ

(2t+ δ)((2t+δ)β+1)! ((2t+δ)θ+2)!
√

(2t+δ)α!
:

δ = ±1; t = ±1,±3, . . .
}
= 1.



818 J. BALOOEE, S. S. CHANG, AND J. TANG

In the case where a = σ2m,2m+2 for some m ∈ {±1,±3, . . . }, then for each
t ∈ {±1,±3, . . . }, we get

d(a, σ2t−1,2t+1) = ∥σ2m,2m+2 − σ2t−1,2t+1∥∞ = 1

and

d(a, σ′
2t−1,2t+1) = ∥σ2m,2m+2 − σ′

2t−1,2t+1∥∞ = 1.

Thereby,

d(a, T (y)) = inf
b∈T (y)

d(a, b) = 1.

If a = σ′
2r,2r+2 for some r ∈ {±1,±3, . . . }, in virtue of the facts that for each

t ∈ {±1,±3, . . . },

d(a, δ2t−1,2t+1) = ∥σ′
2r,2r+2 − σ2t−1,2t+1∥∞ = 1

and

d(a, δ′2t−1,2t+1) = ∥σ′
2r,2r+2 − σ′

2t−1,2t+1∥∞ = 1,

it follows that

d(a, T (y)) = inf
b∈T (y)

d(a, b) = 1.

These facts ensure that

sup
a∈T (x)

d(a, T (y)) = 1.

If b = σ2j−1,2j+1 for some j ∈ {±1,±3, . . . }, since γ ∈ [−1, 0), we get

d({ γ

n(nβ+1)! (nθ+2)!
√
nα!

i}∞n=−∞, σ2j−1,2j+1)

= ∥( γ

n(nβ+1)! (nθ+2)!
√
nα!

i)∞n=−∞ − δ2j−1,2j+1∥∞

= sup{| γ

n(nβ+1)! (nθ+2)!
√
nα!

|, | γ

(2j − 1)((2j−1)β+1)! ((2j−1)θ+2)!
√

(2j−1)α!
− 1|,

| γ

(2j + 1)((2j+1)β+1)! ((2j+1)θ+2)!
√

(2j+1)α!
− 1| : n ∈ Z, n ̸= 2j − 1, 2j + 1}

=


| γ

(2j−1)((2j−1)β+1)! ((2j−1)θ+2)!
√

(2j−1)α!
− 1|, if j ∈ {2k + 1|k ∈ N ∪ {0}},

| γ

(2j+1)((2j+1)β+1)! ((2j+1)θ+2)!
√

(2j+1)α!
− 1|, if t ∈ {−(2k + 1)|k ∈ N ∪ {0}},

=


1− γ

(2j−1)((2j−1)β+1)! ((2j−1)θ+2)!
√

(2j−1)α!
, if j ∈ {2k + 1|k ∈ N ∪ {0}},

1− γ

(2j+1)((2j+1)β+1)! ((2j+1)θ+2)!
√

(2j+1)α!
, if j ∈ {−(2k + 1)|k ∈ N ∪ {0}},

and for each t ∈ {±1,±3, . . . },

d(σ2t,2t+2, σ2j−1,2j+1) = ∥σ2t,2t+2 − σ2j−1,2j+1∥∞ = 1



SYSTEM OF GENERALIZED MULTI-VALUED RESOLVENT EQUATIONS 819

and

d(σ′
2t,2t+2, σ2j−1,2j+1) = ∥σ′

2t,2t+2 − σ2j−1,2j+1∥∞ = 1.

Since γ < 0, we infer that

d(T (x), b) = inf
a∈T (x)

d(a, b) = 1.

For the case when b = σ′
2q−1,2q+1 for some q ∈ {±1,±3, . . . }, in the light of the

fact that γ ∈ [−1, 0), we yield

d({ γ

n(nβ+1)! (nθ+2)!
√
nα!

i}∞n=−∞, σ′
2q−1,2q+1)

= ∥( γ

n(nβ+1)! (nθ+2)!
√
nα!

i)∞n=−∞ − σ′
2q−1,2q+1∥∞

= sup{| γ

n(nβ+1)! (nθ+2)!
√
nα!

|, | γ

(2q − 1)((2q−1)β+1)! ((2q−1)θ+2)!
√

(2q−1)α!
− 1|,

| γ

(2q + 1)((2q+1)β+1)! ((2q+1)θ+2)!
√

(2q+1)α!
+ 1| : n ∈ Z, n ̸= 2q − 1, 2q + 1}

= | γ

(2q − 1)((2q−1)β+1)! ((2q−1)θ+2)!
√

(2q−1)α!
− 1|

= 1− γ

(2q − 1)((2q−1)β+1)! ((2q−1)θ+2)!
√

(2q−1)α!
,

and for each t ∈ {±1,±3, . . . },

d(σ2t,2t+2, σ
′
2q−1,2q+1) = ∥σ2t,2t+2 − σ′

2q−1,2q+1∥∞ = 1

and

d(σ′
2t,2t+2, σ

′
2q−1,2q+1) = ∥σ′

2t,2t+2 − σ′
2q−1,2q+1∥∞ = 1.

Considering the fact that γ < 0, it follows that

d(T (x), b) = inf
a∈T (x)

d(a, b) = 1.

Hence,

sup
b∈T (y)

d(T (x), b) = 1.

Thanks to the above-mentioned discussion, we deduce that

D(T (x), T (y)) = max
{

sup
a∈T (x)

d(a, T (y)), sup
b∈T (y)

d(T (x), b)
}
= 1.

Owing to the fact that γ ∈ [−1, 0), we derive that for each t ∈ {±1,±3, . . . },

∥{ γ

n(nβ+1)! (nθ+2)!
√
nα!

i}∞n=−∞ − σ2t−1,2t+1∥∞
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=


1− γ

(2t−1)((2t−1)β+1)! ((2t−1)θ+2)!
√

(2t−1)α!
> 1, if t ∈ {2k+1 | k ∈ N ∪ {0}},

1− γ

(2t+1)((2t+1)β+1)! ((2t+1)θ+2)!
√

(2t+1)α!
> 1, if t ∈ {−(2k+1) | k ∈ N ∪ {0}},

and

∥{ γ

n(nβ+1)! (nθ+2)!
√
nα!

i}∞n=−∞ − σ′
2t−1,2t+1∥∞

= 1− γ

(2t− 1)((2t−1)β+1)! ((2t−1)θ+2)!
√

(2t−1)α!
> 1.

These facts imply that for any v ∈ T (y),

d(u, v) = ∥u− v∥∞ > D(T (x), T (y)).

It should be remarked that if T (y) is a compact subset of X, then such a
point v does exist. In fact, if T : X → C(X), where C(X) denotes the family
of all the nonempty compact subsets of X, then for any given x, y ∈ X and
u ∈ T (x), there exists v ∈ T (y) such that d(u, v) ≤ D(T (x), T (y)). Due to the
above-mentioned arguments, by rewriting the two relations (4.5) and (4.6), we
now present the correct version of Algorithm 4.1 as follows.

Algorithm 4.2. Let Xi, Ai, Bi, fi, gi, Hi, Mi (i = 1, 2), S, T , E and F be
the same as in the system (4.1). For any given (x0, y0) ∈ X1×X2, u0 ∈ E(x0),
v0 ∈ F (y0), z

′
0 ∈ X1 and z′′0 ∈ X2, compute the sequences {z′n}∞n=0, {z′′n}∞n=0,

{xn}∞n=0, {yn}∞n=0, {un}∞n=0 and {vn}∞n=0 by the following iterative schemes:

xn = R
H1(·,·)
λ1,M1(·,·)(z

′
n),

yn = R
H2(·,·)
λ2,M2(·,·)(z

′′
n),

un ∈ E(xn); ∥un+1 − un∥1 ≤ (1 + 1
1+n )D1(E(xn+1), E(xn)),

vn ∈ F (yn); ∥vn+1 − vn∥2 ≤ (1 + 1
1+n )D2(F (yn+1), F (yn)),

z′n+1 = H1(A1(xn), B1(xn))− λ1S(xn, vn),
z′′n+1 = H2(A2(yn), B2(yn))− λ2T (un, yn),

where n = 0, 1, 2, . . . ; λ1, λ2 > 0 are positive real constants and for i = 1, 2, Di

is the Hausdorff metric on CB(Xi).

By rewriting the system of generalized resolvent equations (4.1) and obtain-
ing a new format of it as

z′ = H1(A1(x), B1(x))− S(x, v) + (I1 − λ−1
1 )J

H1(·,·)
λ1,M1(·,·)(z

′),

z′′ = H2(A2(y), B2(y))− T (u, y) + (I2 − λ−1
2 )J

H2(·,·)
λ2,M2(·,·)(z

′′),

Ahmad and Akram [1] used the above new fixed point formulations and con-
structed Algorithm 3.2 in [1]. But, by an argument analogous to the previ-
ous one, mentioned for Algorithm 4.1, one can deduce that Algorithm 3.2 in
[1] does not work. Indeed, because of (4.5) and (4.6) have been also used in
[1, Algorithm 3.2] to define the iterative sequences {xn}∞n=0, {yn}∞n=0, {un}∞n=0,
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{vn}∞n=0, {z′n}∞n=0 and {z′′n}∞n=0, by a similar argument given as above, we ob-
serve that the aforesaid iterative sequences generated by [1, Algorithm 3.2] are
not well defined. By editing (4.5) and (4.6) and rewriting them the same as
in Algorithm 4.2, we now present the correct version of [1, Algorithm 3.2] as
follows.

Algorithm 4.3. Assume that Xi, Ai, Bi, fi, gi, Hi, Mi (i = 1, 2), S, T , E
and F are the same as in the system (4.1). For any given (x0, y0) ∈ X1 ×X2,
u0 ∈ E(x0), v0 ∈ F (y0), z

′
0 ∈ X1 and z′′0 ∈ X2, compute the sequences {z′n}∞n=0,

{z′′n}∞n=0, {xn}∞n=0, {yn}∞n=0, {un}∞n=0 and {vn}∞n=0 by the following iterative
schemes:

xn = R
H1(·,·)
λ1,M1(·,·)(z

′
n),

yn = R
H2(·,·)
λ2,M2(·,·)(z

′′
n),

un ∈ E(xn); ∥un+1 − un∥1 ≤ (1 + 1
1+n )D1(E(xn+1), E(xn)),

vn ∈ F (yn); ∥vn+1 − vn∥2 ≤ (1 + 1
1+n )D2(F (yn+1), F (yn)),

z′n+1 = H1(A1(xn), B1(xn))− S(xn, vn) + (I1 − λ−1
1 )J

H1(·,·)
λ1,M1(·,·)(z

′
n),

z′′n+1 = H2(A2(yn), B2(yn))− T (un, yn) + (I2 − λ−1
2 )J

H2(·,·)
λ2,M2(·,·)(z

′′
n),

where for i = 1, 2, Ii is the identity mapping on Xi, and λi, Di are the same
as in Algorithm 4.2.

Note, in particular, that by defining the mappings Pi : Xi → Xi and

M̂i : Xi → 2Xi , for each i ∈ {1, 2}, by Pi(xi) := Hi(Aixi, Bixi) and M̂i(xi) =
Mi(fi(xi), gi(xi)) for all xi ∈ Xi, respectively, the same argument used in the
proof of Lemma 4.2 shows that for each i ∈ {1, 2}, Pi is a (µiη

2
i −γiσ

2
i )-strongly

accretive mapping and M̂i is an (αi−βi)-strongly Pi-accretive mapping. Then,
Algorithms 4.2 and 4.3 become actually the same Algorithms 3.1 and 3.2, re-
spectively, and are not new ones.

Finally, the authors [1] concluded their paper with an assertion regarding
the existence of a solution for the system (4.1) and the convergence of the
iterative sequences generated by their suggested algorithm to the solution of
the above-mentioned system. Before proceeding to the main result in [1], we
need to recall the following notion presented in [1].

Definition 4.5 ([1, Definition 2.6]). Let A,B : X → X and H : X ×X → X
be the mappings. Then

(i) H(A, ·) is said to be generalized pseudocontractive with respect to A,
if there exists a constant s > 0 such that

⟨H(Ax, u)−H(Ay, u), j(x− y)⟩ ≤ s∥x− y∥2,
∀x, y, u ∈ X, j(x− y) ∈ F(x− y);
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(ii) H(·, B) is said to be generalized pseudocontractive with respect to B,
if there exits a constant t > 0 such that

⟨H(u,Bx)−H(u,By), j(x− y)⟩ ≤ t∥x− y∥2,
∀x, y, u ∈ X, j(x− y) ∈ F(x− y).

Remark 4.2. It should be pointed out that if bifunction H : X ×X → X is s-
generalized pseudocontractive and t-generalized pseudocontractive with respect
to mappings A : X → X and B : X → X, respectively, then the univariate
mapping P : X → X defined by P (x) := H(Ax,Bx) for all x ∈ X is (s + t)-
generalized pseudocontractive, because of

⟨P (x)− P (y), j(x− y)⟩ = ⟨H(Ax,Bx)−H(Ay,By), j(x− y)⟩
= ⟨H(Ax,Bx)−H(Ay,Bx), j(x− y)⟩
+ ⟨H(Ay,Bx)−H(Ay,By), j(x− y)⟩

≤ s∥x− y∥2 + t∥x− y∥2

= (s+ t)∥x+ y∥2.

In the light of this fact, we found that the notion of generalized pseudocon-
tractiveness of the mapping H : X ×X → X with respect to A and B given in
Definition 4.5 is exactly the same concept of generalized pseudocontractiveness
of the mapping P : X → X defined as above, presented in Definition 3.2 and
is not a new one.

Ahmad and Akram [1] finally proved the existence of a solution for the sys-
tem of resolvent equations (4.1) and studied the convergence analysis of the
sequences generated by their proposed iterative algorithm under some appro-
priate conditions imposed on the parameters and mappings. Before dealing
with the main result given in [1], we need to define the following notion.

Definition 4.6. For given mappings A,B : X → X, a mapping H : X ×X →
X is said to be r-mixed contraction with respect to A and B if there exists a
constant r ∈ (0, 1) such that

∥H(Ax,Bx)−H(Ay,By)∥ ≤ r∥x− y∥, ∀x, y ∈ X.

Theorem 4.1 ([1, Theorem 3.1]). Let for each i ∈ {1, 2}, Xi be a real Banach
space and let Hi : Xi × Xi → Xi be ri-mixed contraction with respect to Ai

and Bi, si-generalized pseudocontractive with respect to Ai and ti-generalized
pseudocontractive with respect to Bi. Suppose that S : X1 × X2 → X1 is
λS1

-Lipschitz continuous and λS2
-Lipschitz continuous in the first and second

arguments, respectively, and T : X1×X2 → X2 is λT1
-Lipschitz continuous and

λT2-Lipschitz continuous in the first and second arguments, respectively. Let
E : X1 → CB(X1) and F : X2 → CB(X2) be λDE

-D1-Lipschitz continuous
and λDF

-D2-Lipschitz continuous, respectively, and let for each i ∈ {1, 2},
Mi : Xi × Xi → 2Xi be an Hi(Ai, Bi)-co-accretive mapping with respect to
Ai, Bi, fi, gi : Xi → Xi with constants µi, γi, αi, βi, respectively, such that αi >
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βi and µi > γi. Suppose further that for each i ∈ {1, 2}, Ai is ηi-expansive
and Bi is σi-Lipschitz continuous such that ηi > σi. If there exist constants
λ1, λ2 > 0 such that {

0 < L1(K1 +
√
θ1 +

√
θ3) < 1,

0 < L2(K2 +
√
θ2 +

√
θ4) < 1,

(4.9)

where

Ki =

√
1 + 2(si + ti) + 3ri

1− ri
, Li =

1

λi(αi − βi) + µiη2i − γiσ2
i

(i = 1, 2),

θ1 =
1 + λ1λS1

1− λ1(λS1
+ λS2

λDF
)
, θ2 =

λ1λS2λDF

1− λ1(λS1
+ λS2

λDF
)
,

θ3 =
λ2λT1

λDE

1− λ2(λT1λDE
+ λT2)

, θ4 =
1 + λ2λT2

1− λ2(λT1λDE
+ λT2)

,

λ1(λS1
+ λS2

λDF
) < 1, λ2(λT1

λDE
+ λT2

) < 1,

then the iterative sequences {xn}∞n=0, {yn}∞n=0, {un}∞n=0, {vn}∞n=0, {z′n}∞n=0

and {z′′n}∞n=0 generated by Algorithm 4.2 converge strongly to x, y, u, v, z′ and
z′′, respectively, and (x, y, u, v, z′, z′′) is a solution of the system (4.1).

Proof. Let us define the mappings Pi : Xi → Xi and M̂i : Xi → 2Xi for each

i ∈ {1, 2} as Pi(xi) = Hi(A(xi), B(xi)) and M̂i(xi) = Mi(fi(xi), gi(xi)) for all
xi ∈ Xi, respectively. By the argument similar to that of Lemma 4.2, one can
deduce that for each i ∈ {1, 2}, Pi is a (µiη

2
i −γiσ

2
i )-strongly accretive mapping

and M̂i is an (αi−βi)-strongly Pi-accretive mapping. Since for each i ∈ {1, 2},
Hi is ri-mixed contraction with respect to mappings Ai and Bi, si-generalized
pseudocontractive with respect to Ai and ti-generalized pseudocontractive with
respect to Bi, it follows that for each i ∈ {1, 2}, Pi is ri-contraction, and
thanks to Remark 4.2, Pi is (si + ti)-generalized pseudocontractive. Then,
taking ζi = µiη

2
i − γiσ

2
i , ϱi = αi − βi and ςi = si + ti for each i ∈ {1, 2}, we

observe that (4.9) becomes actually the same (3.5). Furthermore, Algorithm 4.2
coincides exactly with Algorithm 3.1. Now, all the conditions of Theorem 3.1
are satisfied, and so the conclusion follows from Theorem 3.1 immediately. □

Remark 4.3. It is important to mention that by a careful reading the proof
of [1, Theorem 3.1], we found that there are some errors and small mistakes
in its context which must be resolved. Firstly, the authors assumed that
for each i ∈ {1, 2}, the mapping Hi is ri-mixed Lipschitz continuous with
respect to mappings Ai and Bi. Obviously, the fact for each i ∈ {1, 2},
Ki =

√
1+2(si+ti)+3ri

1−ri
implies that ri ∈ (0, 1). Owing to the fact that ev-

ery r-Lipschitz continuous mapping with r ∈ (0, 1) is contraction, it follows
that for each i ∈ {1, 2}, the mapping Hi is actually a ri-mixed contraction
with respect to Ai and Bi. In virtue of this fact, in context of [1, Theorem
3.1], the assumption of ri-mixed Lipschitz continuity of the mapping Hi with
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respect to mappings Ai and Bi (i = 1, 2) must be replaced by the assumption
that for each i ∈ {1, 2}, the mapping Hi is ri-mixed contraction with respect
to Ai and Bi, as we have done in the context of Theorem 4.1. Secondly, the
authors [1] assumed that the mappings M1 and M2 are Lipschitz continuous
with constants L1 = 1

λ1(α1−β1)+µ1η2
1−γ1σ2

1
and L2 = 1

λ2(α2−β2)+µ2η2
2−γ2σ2

2
, re-

spectively, whereas the sufficient conditions for the multi-valued mappings M1

and M2 to be Lipschitz continuous with constants L1 and L2, where L1 and
L2 are the same as in above, are stated in Lemma 4.2. According to Lemma
4.2, for each i ∈ {1, 2}, the multi-valued mapping Mi : Xi ×Xi → 2Xi needs
to be an Hi(·, ·)-co-accretive mapping with respect to Ai, Bi, fi and gi with
constants µi, γi, αi and βi, respectively, such that αi > βi and µi > γi, and
the mappings Ai and Bi need to be ηi-expansive and σi-Lipschitz continu-
ous, respectively, such that ηi > σi. Hence, in the context of [1, Theorem
3.1], the assumption that the mappings M1 and M2 are Lipschitz continuous
with constants L1 = 1

λ1(α1−β1)+µ1η2
1−γ1σ2

1
and L2 = 1

λ2(α2−β2)+µ2η2
2−γ2σ2

2
, re-

spectively, must be replaced by the above-mentioned conditions related to the
mappings Ai, Bi, fi, gi and Mi, as we have done in the context of Theorem
4.1. Thirdly, in view of (4.9), the assumptions of λ1(λS1

+ λS2
λDF

) < 1 and
λ2(λT1

λDE
+ λT2

) < 1 must be added to the context of Theorem 3.1 of [1], as
we have added to the context of Theorem 4.1. At the same time, as we have
already shown, Algorithm 4.1 (that is, [1, Algorithm 3.1]) does not work and
Algorithm 4.2 is its correct version. Hence, in the context of Theorem 3.1 of
[1], Algorithm 4.1 must be replaced by Algorithm 4.2, as we have done in the
context of Theorem 4.1.
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