• Title/Summary/Keyword: Gear Tooth

Search Result 356, Processing Time 0.028 seconds

An Investigation on the Method of Tooth Modification for Noise Suppression of Gear Transmission (기어 변속기의 소음저감을 위한 치형수정 설정방법에 관한 고찰)

  • Bae, M.H.;Park, N.G.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.6
    • /
    • pp.243-251
    • /
    • 1998
  • A method of establishing the tooth modification for gear transmission of vehicles to reduce gear whine noise, caused by tooth impact phenomenon of mating gear, is introduced. The major causes of tooth impact are due to the deflections of gear teeth and shafts of transmission with the loaded condition including various kinds of manufacturing errors. The theoretical shape of tooth surface to avoid tooth impact is derived by the amount of elastic deformation of gear teeth and shaft and overall manufacturing error of machine tool. The surface function is converted with respect to the conventional commercial data usually communicated to the gear inspection system. The proposed method is applied to the gearbox of four wheel drive vehicle and shows the gear whine noise decreased to the 8 dB in the sound level.

  • PDF

A Study on Composite Tooth Profile Generation of Involute and Circular Are (인벌류우트 - 圓孤 合成齒形의 創成 에 대한 硏究)

  • 최상동;변준형;윤갑영
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.9 no.5
    • /
    • pp.572-578
    • /
    • 1985
  • A composite gear with involute-circular are tooth profile and a tooth profile of the rack to cut this gear are theoretictically obtained. The composite gear has involute tooth profile in the vicinity of pitch point and has circular arc tooth profiles at addendum adn dedendum. The contact ratio(M$_{c}$), chordal tooth thickness (chordal tip tooth thickness S$_{t}$, chordal root tooth thickness S$_{t}$) of the composite gear are compared with those of involute gear. When module, number of teeth and pressure angle eqaul, S$_{t}$ of composite gear is much larger than that of involute gear. Under the same conditions, S/sib t/ and M$_{c}$ of composite gear become smaller than those of involute gear.lute gear.

Design and Meshing Analysis of a Non-involute Internal Gear for Counters (계수기용 비인벌류트 치형의 내치차 설계와 물림해석)

  • Lee, Sung-Chul
    • Tribology and Lubricants
    • /
    • v.30 no.4
    • /
    • pp.212-217
    • /
    • 2014
  • A counter gear transmits the rotation angle, so the angular velocity ratio of the gear does not necessarily need to be constant in the meshing process. As a pinion has a small number of teeth when combined with an internal gear for counters, tooth interference can occur with the use of an involute curve. This paper introduces circular arcs that represent a tooth profile and fillet for the profile design of a pinion through the combination of arcs with lines. The straight line of a rack tooth represents the profile of a mating internal gear. Thus, the circular arc and line maintain contact during the rotation of the counter gear. This paper presents an analysis of the meshing of the circular arc tooth and rack tooth along with the properties of the counter gear, such as the change in rotational velocity and amount of backlash. The contact ratio of the counter gear is 1 because the tooth contact occurs between circular arcs and line. The initial position of tooth contact, which denotes the simultaneous contact of two teeth, is found. As the rotation of the pinion, only one tooth keeps the contact situation. This meshing property is analyzed by the geometrical constraints of the tooth profile in contact and the results are presented as graphical diagrams in which tooth-arc movements are superimposed.

Study on the Tooth Modification for High Speed Gear by Finite Element Method (FEM을 이용한 고속기어 치형 수정에 관한 연구)

  • 반재삼;이경원;김규하;조규종
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.12 no.1
    • /
    • pp.72-77
    • /
    • 2003
  • The stable driving condition of high speed gear is approached by shape modifications of a gear tooth. Recently, many gear designers are using FEM for the design and the manufacture of a high precision gear. In this paper, it is aimed to drive in stable sound level through the modification of the tooth and the shape of a gear. The simulation is used to understand the effect of holes for the decrement of weight and the stress variation for the tooth modification. Beam elements used to simulate the same condition as a real gear drive by FEM. The driven gear is simulated to 60,000rpm for the tooth modification.

Gear Teeth Modification for a 2.5MW Wind Turbine Gearbox (2.5MW 풍력발전기 기어박스 치형수정)

  • Lee, Hyoung Woo;Kang, Dong-Kwon
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.23 no.2
    • /
    • pp.109-117
    • /
    • 2014
  • This paper reports a method to modify the gear tooth profile of a wind turbine gearbox to reduce the noise caused by the impact of the gear teeth. The major causes of tooth impact are the elastic deformation of the gear teeth, shafts, and case of the gearbox under loading, and the fabrication tolerances in gear manufacturing. In this study, the tooth profile was modified considering the elastic deformation of the gear tooth and the tooth lead modification to compensate for tooth interference in the lead direction as a result of shaft deformations. The method was applied to the gearbox of a 2.5MW wind turbine, and the transmission error was characterized before and after modifying the gear teeth. For the modified gear teeth, the transmission error (67.6%) was lower by 17.8%. Additionally, the gear contact stress was reduced by 6.3%, to 22.3%.

Nonlinear Dynamic Characteristics of Gear Driving System with Tooth Modification (치형수정된 기어구동계의 비선형 동특성 해석)

  • Cho, Yun-Su;Choi, Yeon-Sun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.25-30
    • /
    • 2002
  • To reduce the vibration of a gear driving system, the modification of gear tooth from the orignal involute gear profile is usually done in gear manufacturers. The quantity of tooth modification has been decided on the basis of the interference between two gear teeth during gear meshing and the elastic deformation due to loading. However, the dynamic characteristics with tooth modification has to be investigated to avoid the instability to the variation of gear meshing stiffness and the nonlinearity due to gear backlash which results in sub- or super-harmonics in its responses. This research shows the dynamic characteristics with various tooth modifications in its type and quantity.

  • PDF

Nonlinear Dynamic Characteristics of Gear Driving System with Tooth Modification (치형수정된 기어구동계의 비선형 동특성 해석)

  • 조윤수;최연선
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.9
    • /
    • pp.688-693
    • /
    • 2003
  • To reduce the vibration of a gear driving system. the modification of gear tooth from the orignal involute gear profile is usually done in gear manufacturers. The quantity of tooth modification has been decided on the basis of the interference between two gear teeth during gear meshing and the elastic deformation due to loading. However. the dynamic characteristics with tooth modification has to be investigated to avoid the instability to the variation of gear meshing stiffness and the nonlinearity due to gear backlash which results in sub- or super-harmonics in its responses. This research shows the dynamic characteristics with various tooth modifications in its type and quantity.

Analysis on load-bearing contact characteristics of face gear tooth surface wear with installation errors

  • Fan Zhang;Xian-long Peng
    • Computers and Concrete
    • /
    • v.31 no.2
    • /
    • pp.163-171
    • /
    • 2023
  • Face gear transmission is widely used in aerospace shunt-confluence transmission system. Tooth wear is one of the main factors affecting its bearing transmission performance. Furthermore, the installation errors of face gear are inevitable. In order to study the wear mechanism of face gear tooth surface with installation errors, based on tooth contact analysis numerical method and Archard wear theory, the UMESHMOTION subroutine in ABAQUS is developed.Combining with Arbitrary Lagrangian-Eulerian adaptive mesh technology, the finite element mesh wear model of abraded face gear pair is established.The preprocessing conditions are set to generate the inp files.Then,the inp files for each corner are imported and batch processed in ABAQUS.The loading tooth contact problem at each rotation angle is solved and the load distribution coefficient among gear tooth, tooth root bending stress, tooth surface contact stress and loaded transmission error are obtained. Results show that the tooth root wear is the most serious and the wear at the pitch cone is close to 0.The wear law of tooth surface along tooth width direction is convex parabola and the wear law along tooth height direction is concave parabola.

Modeling of Transmission Error of A Gear Pair with Modified Teeth (치형수정된 기어쌍의 치합전달오차 모델링)

  • 주상훈;노오현;정동현;배명호;박노길
    • Journal of KSNVE
    • /
    • v.8 no.5
    • /
    • pp.841-848
    • /
    • 1998
  • In the gear manufacturing, tooth modification is usually applied for the prevention of tooth impact during the loading. In contrary, tooth profile error causes amplifying the whine noise which is cumbersome to reduce in the automobile gear box. So optimum quantity of the modifications must be obtained for the good performance in the vibrational sense. In this paper, a formulation to define the tooth curve by considering the profile manufacturing error and loading deformation of the gear tooth is suggested and the transmission error and loading deformation of the gear tooth is suggested and the transmission error with modified tooth in the gear system is evaluated. A pair of gear set is mathematically modelled. The equivalent excitation in the gear vibratonal model is formulated. For the experimental evaluaton on the derived transmission error function, a simple geared system is set up in which the gears are designed to give pre-designed tooth profile modification and manufactured by CNC Wire Cutting Machine. Under slow speed operaton, the transmission error of the gear pair is measured by using two rotational laser vibrometers, compared with the calculated one of which the result shows good agreement.

  • PDF

A study on strength of internal gear (내접치차의 강도에 관한 연구)

  • 정태형
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.6 no.3
    • /
    • pp.45-54
    • /
    • 1984
  • Bending strength of an internal gear tooth is discussed as tooth form factor taking into account the actual stress magnitude. Stress analysis was carried out by the finite element method(FEM) for the calculation of tooth form factor of an internal gear. This paper also investigated the influences of number of teeth and addendum modification coefficient of the internal gear and the influences of number of teeth, addendum modification coefficient, pressure angle, radius of rounding of tooth tip, and bottom clearance coefficient of the pinion-shaped cutter on tooth form factor of internal gear. Generalizing the resultant data, a simple formula for the tooth form factor of an internal gear was derived for the calculation of tooth bending strength of an internal gear.

  • PDF