• Title/Summary/Keyword: Gaussian approximation

Search Result 180, Processing Time 0.031 seconds

OPTIMAL APPROXIMATION BY ONE GAUSSIAN FUNCTION TO PROBABILITY DENSITY FUNCTIONS

  • Gwang Il Kim;Seung Yeon Cho;Doobae Jun
    • East Asian mathematical journal
    • /
    • v.39 no.5
    • /
    • pp.537-547
    • /
    • 2023
  • In this paper, we introduce the optimal approximation by a Gaussian function for a probability density function. We show that the approximation can be obtained by solving a non-linear system of parameters of Gaussian function. Then, to understand the non-normality of the empirical distributions observed in financial markets, we consider the nearly Gaussian function that consists of an optimally approximated Gaussian function and a small periodically oscillating density function. We show that, depending on the parameters of the oscillation, the nearly Gaussian functions can have fairly thick heavy tails.

Approximation for the Two-Dimensional Gaussian Q-Function and Its Applications

  • Park, Jin-Ah;Park, Seung-Keun
    • ETRI Journal
    • /
    • v.32 no.1
    • /
    • pp.145-147
    • /
    • 2010
  • In this letter, we present a new approximation for the twodimensional (2-D) Gaussian Q-function. The result is represented by only the one-dimensional (1-D) Gaussian Q-function. Unlike the previous 1-D Gaussian-type approximation, the presented approximation can be applied to compute the 2-D Gaussian Q-function with large correlations.

Review on statistical methods for large spatial Gaussian data

  • Park, Jincheol
    • Journal of the Korean Data and Information Science Society
    • /
    • v.26 no.2
    • /
    • pp.495-504
    • /
    • 2015
  • The Gaussian geostatistical model has been widely used for modeling spatial data. However, this model suffers from a severe difficulty in computation because inference requires to invert a large covariance matrix in evaluating log-likelihood. In addressing this computational challenge, three strategies have been employed: likelihood approximation, lower dimensional space approximation, and Markov random field approximation. In this paper, we reviewed statistical approaches attacking the computational challenge. As an illustration, we also applied integrated nested Laplace approximation (INLA) technology, one of Markov approximation approach, to real data to provide an example of its use in practice dealing with large spatial data.

Numerical Comparisons for the Null Distribution of the Bagai Statistic

  • Ha, Hyung-Tae
    • Communications for Statistical Applications and Methods
    • /
    • v.19 no.2
    • /
    • pp.267-276
    • /
    • 2012
  • Bagai et al. (1989) proposed a distribution-free test for stochastic ordering in the competing risk model, and recently Murakami (2009) utilized a standard saddlepoint approximation to provide tail probabilities for the Bagai statistic under finite sample sizes. In the present paper, we consider the Gaussian-polynomial approximation proposed in Ha and Provost (2007) and compare it to the saddlepoint approximation in terms of approximating the percentiles of the Bagai statistic. We make numerical comparisons of these approximations for moderate sample sizes as was done in Murakami (2009). From the numerical results, it was observed that the Gaussianpolynomial approximation provides comparable or greater accuracy in the tail probabilities than the saddlepoint approximation. Unlike saddlepoint approximation, the Gaussian-polynomial approximation provides a simple explicit representation of the approximated density function. We also discuss the details of computations.

CONSTRUCTIVE APPROXIMATION BY GAUSSIAN NEURAL NETWORKS

  • Hahm, Nahm-Woo;Hong, Bum-Il
    • Honam Mathematical Journal
    • /
    • v.34 no.3
    • /
    • pp.341-349
    • /
    • 2012
  • In this paper, we discuss a constructive approximation by Gaussian neural networks. We show that it is possible to construct Gaussian neural networks with integer weights that approximate arbitrarily well for functions in $C_c(\mathbb{R}^s)$. We demonstrate numerical experiments to support our theoretical results.

Perpendicular Magnetic Recording Channel Equalization Based on Gaussian Sum Approximation of Kalman Filters (Gaussian Sum Approximation을 기반으로 한 Kalman filter의 수직자기 채널 등화기법)

  • Kong, Gyu-Yeol;Cho, Hyun-Min;Choi, Soo-Yong
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.297-298
    • /
    • 2008
  • A new equalization method for perpendicular magnetic recording channels is proposed. The proposed equalizer incorporates the Gaussian sum approximation into a Kalman filtering framework to mitigate inter-symbol interference in perpendicular magnetic recording systems. The proposed equalizer consists of a bank of linear equalizers using the Kalman filtering algorithm and its output is obtained by combining the outputs of linear equalizers through the Gaussian sum approximation.

  • PDF

An Approximation Method for the Estimation of Exposed dose due to Gamma - rays from Radioactive Materials dispersed to the Atmoshere (대기로 확산된 방사성물질로부터 방출되는 감마선에 의한 피폭선량을 계산하기 위한 근사화 방법)

  • Kim, T.W.;Park, C.M.;Ro, S.G.
    • Journal of Radiation Protection and Research
    • /
    • v.15 no.2
    • /
    • pp.51-56
    • /
    • 1990
  • The dispersing model of radioactive plume in the atmosphere was assumed to form finite ellipseshaped volumes rather than a single plume and gamma absorbed doses from the plume were computed using the proposed model. The results obtained were compared with those computed by the Gaussian plume and the circular approximation models. The results computed by the proposed ellipse-shaped approximation model were close to those by the Gaussian plume model. and more accurate than those by the circular approximation model. The computing time for the proposed approximation model was one fortieth of that for the Gaussian plume model.

  • PDF

Convergence of Min-Sum Decoding of LDPC codes under a Gaussian Approximation (MIN-SUM 복호화 알고리즘을 이용한 LDPC 오류정정부호의 성능분석)

  • Heo, Jun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.10C
    • /
    • pp.936-941
    • /
    • 2003
  • Density evolution was developed as a method for computing the capacity of low-density parity-check(LDPC) codes under the sum-product algorithm [1]. Based on the assumption that the passed messages on the belief propagation model can be approximated well by Gaussian random variables, a modified and simplified version of density evolution technique was introduced in [2]. Recently, the min-sum algorithm was applied to the density evolution of LDPC codes as an alternative decoding algorithm in [3]. Next question is how the min-sum algorithm is combined with a Gaussian approximation. In this paper, the capacity of various rate LDPC codes is obtained using the min-sum algorithm combined with the Gaussian approximation, which gives a simplest way of LDPC code analysis. Unlike the sum-product algorithm, the symmetry condition [4] is not maintained in the min-sum algorithm. Therefore, the variance as well as the mean of Gaussian distribution are recursively computed in this analysis. It is also shown that the min-sum threshold under a gaussian approximation is well matched to the simulation results.

EXISTENCE AND STABILITY RESULTS FOR STOCHASTIC FRACTIONAL NEUTRAL DIFFERENTIAL EQUATIONS WITH GAUSSIAN NOISE AND LÉVY NOISE

  • P. Umamaheswari;K. Balachandran;N. Annapoorani;Daewook Kim
    • Nonlinear Functional Analysis and Applications
    • /
    • v.28 no.2
    • /
    • pp.365-382
    • /
    • 2023
  • In this paper we prove the existence and uniqueness of solution of stochastic fractional neutral differential equations with Gaussian noise or Lévy noise by using the Picard-Lindelöf successive approximation scheme. Further stability results of nonlinear stochastic fractional dynamical system with Gaussian and Lévy noises are established. Examples are provided to illustrate the theoretical results.

Modified Gaussian Approximation for Multiple Access Interference of UWB-TH system with BPSK (UWB-TH BPSK 시스템의 다중 사용자 간섭을 위한 개선된 가우시안 근사)

  • Park, Jang-Woo;Cho, Sung-Eon;Cho, Kyung-Ryung
    • Journal of Advanced Navigation Technology
    • /
    • v.9 no.1
    • /
    • pp.56-60
    • /
    • 2005
  • To calculate the probability of bit error of UWB communication systems, the exact expression of multiple access interference is essential. So far, in many researches, MAI has been modeled by the Gaussian Approximation, which leads to the huge errors. And there are some tries to obtain the exact model fot the MAI but they have some problems such as long calculation time. We introduce the simple expression to calculate the probability of error of an UWB-TH system with BPSK. The multiple access interference is explained by the characteristic function method combined with the Gaussian approximation. It allows us to easily and fast calculate the bit error rate of an UWB-TH system.

  • PDF